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ABSTRACT 

One of the greatest perceived barriers to the widespread use 

of FPGAs in image processing is the difficulty for application 

specialists of developing algorithms on reconfigurable hard-

ware. Minimum entropy deconvolution (MED) techniques 

have been shown to be effective in the restoration of star-field 

images. This paper reports on an attempt to implement a 

MED algorithm using simulated annealing, first on a micro-

processor, then on an FPGA. The FPGA implementation uses 

DIME-C, a C-to-gates compiler, coupled with a low-level 

core library to simplify the design task. Analysis of the C 

code and output from the DIME-C compiler guided the code 

optimisation. The paper reports on the design effort that this 

entailed and the resultant performance improvements. 

1. INTRODUCTION 

Research into the use of field-programmable gate arrays 

(FPGAs) in image processing began in earnest at the begin-

ning of the 1990s. Since then, many thousands of publica-

tions have pointed to the computational capabilities of 

FPGAs. During this time, FPGAs have seen the application 

space to which they are applicable grow in tandem with 

their logic densities. Reference [1] is a good introduction to 

FPGA-based reconfigurable computing in general, and [2] 

describes well the issues surrounding FPGA-based image 

processing. When investigating a particular application, re-

searchers compare FPGAs with alternative technologies 

such as Digital Signal Processors (DSPs), Application-

Specific Integrated Circuits (ASICs), microprocessors and 

vector processors.  The metrics for comparison depend on 

the needs of the application, and include such measurements 

as raw performance, power consumption, unit cost, board 

footprint, non-recurring engineering cost, design time and 

design cost. The key metrics for a particular application may 

also include ratios of these metrics, e.g. power/performance, 

or performance/unit-cost. The work detailed in this paper 

compares a 90nm-process commodity microprocessor with a 

platform based around a 90nm-process FPGA, focussing on 

design time and raw performance.  

 

The application chosen for implementation was a minimum 

entropy restoration of star-field images with simulated an-

nealing used to converge towards the globally-optimum solu-

tion. The authors did not choose this application in the belief 

that it would particularly suit one technology over another, 

but instead selected it as being representative of a computa-

tionally intensive image-processing application. 

2. MINIMUM ENTROPY DECONVOLUTION 

Image restoration using the minimum entropy deconvolution 

(MED) method is discussed at length in [3]-[8]. However, 

the algorithm presented in [3] does not offer a precise and 

clear explanation of the different stages. While the principle 

is very clearly defined, the different steps of the algorithm 

are confusing. To implement this algorithm in software and 

on an FPGA, it is important to understand the complex cal-

culations in order to optimise them. The purpose of this sec-

tion is then not to redefine the basis of the MED optimisa-

tion but to explain with more accuracy the different stages of 

the simulated annealing algorithm used in this application.  

2.1 Simulated Annealing method 

Suppose the image distortion system can be modelled as: 

  ),(),(),(),( 21212121 kkkkhkkxkky ξ+∗= . (1) 

What is desired is an estimate of the original image x(k1,k2) 

from the observed image y(k1,k2), assuming that the image 

was distorted by a blurring system whose point spread func-

tion (PSF) can be approximated by a Gaussian function: 
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where m1, m2 designates the size of the PSF (m1, m2 = -2, -1, 

0, 1, 2 for a 5 x 5 filter) and γ is a constant used to normalise 

the Gaussian function. d corresponds to the width of the PSF 

and determines the blurring level applied to the image. 

ξ(k1,k2) is an additive white Gaussian noise defined by a 

mean and a variance. 

 

The iterative simulated annealing algorithm (SA) consists of 

starting with an initial estimate for x(k1,k2) and searching for 

changes which minimise the energy function E(x,h(d)) de-

fined as: 
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The first estimation for x can be chosen to be either the ob-

served image y(k1,k2), an empty image or a random image. 

SA differs from other iterative techniques in that it uses a 

temperature parameter to avoid getting trapped in a local 

optimum, something which is generally the case in other 

methods, such as gradient descent. 

 

In each iteration of the algorithm, a new candidate for the 

estimate of the original image is computed. Also, a variation 

in the PSF is produced by varying the parameter blurring 

level coefficient d. These slight changes result in the system 

energy E changing by ∆E. If ∆E is negative the adjustments 

to the image x(k1,k2) and the parameter d are accepted. If ∆E 

is positive or zero the adjustments of the image x(k1,k2) and 

the parameter d are accepted with a probability which de-

creases exponentially with ∆E/T. At the beginning of the 

process, the temperature T is large and therefore the adjust-

ments are more likely to be accepted, allowing gross fea-

tures of the image to appear. At low temperature levels, the 

algorithm is more likely to reject image adjustments, allow-

ing only fine adjustments to the estimated image. When the 

temperature becomes zero, the procedure stops at the opti-

mal state of minimum energy. 

2.2 Algorithm steps 

At this point, we use x and y as shorthand for x(k1,k2), y(k1,k2) 

respectively to simplify the explanatory text. 

• Step 0: Set p=0 and initialise α, β, λ, Tp, dp and xp. 

x0 can be either the observed image, an empty image or even 

a random image. 

T0 is set high. The best way to determine a suitable starting 

temperature is to run the algorithm and note whether or not 

adjustments are accepted in a good proportion. (100 can be 

used as a starting point). 

d0 could have a range of [0, ∞ ] though too large a value 

would cause the algorithm to fail, the image being too 

blurred. A range of [0, 20] is therefore more realistic to 

consider as it gives a PSF that is not too large. 

α & λ can be set to 1 to make them neither too small nor too 

large. However, β has to be very small, 0.0001 being a 

suitable value. 

• Step 1: Compute the energy Ep(xp, h(dp)). 

Use (3). Replace x by xp. Replace h(d) by h(dp). This means 

that the Gaussian function has to be determined for each d. 

Take y as the observed image. 

 

 

• Step 2: Select a candidate solution. 

Compute the candidate image x’ and the candidate parameter 

for the Gaussian function d’: 
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k1 & k2 span the entire image and m1 & m2 give the size of 

the Gaussian function. n1 & n2 are used to define a particular 

pixel of the considered image xp. The computation of ∆xp is 

carried out for every pixel of the image to get an overall new 

value of this image. This value must be computed n2 times 

for an image of size n x n.  

 

and: 
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k1, k2, m1 and m2 have the same definition as before. This 

computation is unique for each iteration of the algorithm. 

• Step 3: Compute the energy E’p+1(x’p+1, h(d’p+1)). Let: 

  pp EEE −=∆ +1' . (8) 

• Step 4: If: 
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Then: 
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where r is a random number on the interval [0,1].  

 

Else: 

 )(, 111 pppppp TfTandddxx === +++ . (12) 

where f(.) is a decreasing function. The simplest function 

would be: 1)( −= xxf . 
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• Step 5: 1+= pp .  

If the temperature T is not zero, the termination condition is 

not satisfied, go to Step 1. 

• Step 6: Output xp+1 is the estimation image. 

The last xp+1 image is the estimate of the original image. 

 

The data used in calculations in the algorithm begin as 8-bit 

integer pixel values. The 24 bits of precision of IEEE754 

single precision suffices for all the calculations in the algo-

rithm. Floating-point calculations are required because there 

are parts of the algorithm that require higher dynamic range 

than provided by integer arithmetic. The dynamic range re-

quirements are fully satisfied by single precision, so there is 

no requirement for double-precision calculations. Nallatech‘s 

DIME-C compiler, a C-to-Gates compiler that targets FPGA 

computing boards was used. The compiler is well-suited to 

floating-point computation, uses a subset of ANSI C and 

allows for the inclusion of libraries of low-level functional 

cores. 

3. HIGH-LEVEL TECHNIQUES FOR FPGAS 

3.1 Traditional FPGA Programming 

Field-Programmable Gate Arrays are programmed by means 

of a bitstream or bitfile that tells the chip how to configure 

its internal logic, memory and routing resources. Without 

this bitstream the chip has no functionality at all. The “tradi-

tional” method of obtaining an FPGA bitstream is to de-

scribe the desired system in terms of synchronous electronic 

components using a hardware description language (HDL). 

The most well-known of these HDLs are VHDL and Ver-

ilog. To go from a functional specification to a functioning 

bitstream involves writing HDL, then simulating it. Due to 

the low level description and verbose nature of these HDL 

languages this can be a lengthy and error-prone process us-

ing expensive tools. Once the HDL is functioning correctly 

in simulation, it is passed through synthesis tools. For high-

performance computing applications, this “traditional” proc-

ess may result in good performance and low resource use, 

but it requires an expertise that most application developers 

do not possess and requires an investment of time that 

would be unreasonable for most applications. 

3.2 High-Level FPGA Programming 

There has been a concerted research effort aimed at develop-

ing design techniques for reconfigurable computing that bet-

ter suit application-domain specialists [9]-[11]. Among the 

high-level tools that promise to simplify the task of imple-

menting an algorithm is DIME-C. DIME-C is a compiler that 

turns high-level code into a combination of VHDL and pre-

synthesized logical netlists. The C that DIME-C can compile 

is a subset of ANSI C. This means that while not everything 

that can be compiled using a standard C compiler can be 

compiled by DIME-C, all source code that can be compiled 

in DIME-C can also be compiled using a standard C com-

piler. This allows for rapid functional verification of algo-

rithm code before compilation to FPGA hardware.  

 

Application developers write code as standard ANSI C, 

avoiding certain constructs such as pointers. The compiler 

aims to extract obvious parallelism within loop bodies as 

well as to pipeline loops wherever possible. In nested loops, 

the compiler pipelines the innermost loop. One must also 

ensure loops do not break any of the rules for pipelining. The 

code must be non-recursive, and must not access memory 

arrays more times per cycle than can be accommodated by 

the underlying memory structure. Beyond these considera-

tions the user does not need any knowledge of hardware de-

sign in order to produce VHDL code of pipelined architec-

tures that implement algorithms. DIME-C supports bit-level, 

integer and floating-point arithmetic. The compiler also sup-

ports the inclusion of support libraries that allow users to 

implement functions previously created either in DIME-C or 

via a more traditional design process directly using HDLs.  

Additionally, the compiler seeks to exploit the essentially 

serial nature of the programs to resource share between sec-

tions of the code that do not execute concurrently. This 

means the compiler can implement complex algorithms that 

demand many floating-point operations, provided no concur-

rently executing code aims to use more resources than are 

available on the device. Such a resource-sharing optimisation 

would be extremely difficult to implement manually using 

HDL.  The compiler displays its temporal scheduling visually 

and produces a report file that together show the parallelisa-

tion of the user code. Figure 1 below shows the programming 

process used. DIMETalk is used here is equivalent to a soft-

ware linker to link the DIME-C code to the necessary mem-

ory structure and the specific hardware platform. 

 

Application Coded in ANSI-C 

ANSI-C Compilation and Test 

HW/SW Partitioning

ANSI-C
Code

DIME-C
Code

DIME-C
Compiler

ANSI-C
Compiler

Object Files DIMETalk
Component

DIMETalk
Network

Linker DIMETalk

Executable Bitfile

Processor FPGA

 
 

Figure 1 – Programming process for reconfigurable computing 

using Nallatech tools and hardware 
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3.3 Core Libraries 

DIME-C allows for the inclusion of core libraries. Core li-

braries allow users to use FPGA functions that have been 

developed, tested and packaged. Reference [12] gives detail 

on the motivations for integrating core libraries into high-

level tools. The reference also discusses the creation of a 

math library that is used in the context of this project. This 

math library has been created using standard HDL tech-

niques, then packaged in such a way as to be indistinguish-

able from the math library used in ANSI C to the tools user. 

The exponential function and a pseudo-random number gen-

erator function are used in the simulated annealing algorithm 

that is implemented here. These functions were created in 

VHDL, then packaged into a core library to allow them to be 

called in an identical manner to their ANSI C counterparts. 

Without access to this math library, the implementation of the 

simulated annealing algorithm would have represented a far 

more significant research challenge. This paper is, believed 

to be, the first publication on the use of this mathematical 

core library in an actual application. 

 

The difference between the use of library-enabled high-level 

FPGA languages such as DIME-C and a traditional HDL 

approach is marked. It is analogous to the difference between 

programming in the C language with access to function li-

braries and creating programs in assembler without any sup-

port libraries.  

4. IMPLEMENTATION 

Two of the authors involved in the work took the role of 

application specialists, in that they focussed primarily on 

developing the image processing application and obtaining a 

working software implementation. The other two authors 

were reconfigurable-computing specialists, who looked to 

interact with the application specialists to help them make 

the transition to a hardware implementation, instructing 

them on how to get the most from the design tools used.  

4.1 Software and Hardware Platforms 

The software platform was a 3.2 GHz Intel Pentium D proc-

essor with 2 GB of DRAM, with the GNU C compiler, ver-

sion 3.4.2. The targeted FPGA platform was a Nallatech 

H101-PCIXM card, with the DIME-C compiler. The H101-

PCIXM card has a Xilinx Virtex-4 LX100 FPGA, 512 MB 

of DRAM and 4 banks of 200MHz, 4 MB SRAM.  

4.2 ANSI C Software Implementation 

In the first stage of implementation, the application special-

ists developed the algorithm from theory to implementation 

in ANSI C on a commodity microprocessor. This stage rep-

resented the majority of the time spent in the project, around 

100 person-hours. The application specialists carried out this 

work without any significant input from the reconfigurable-

computing specialists. Once the algorithm was functioning 

satisfactorily in software, the second stage began. 

 

 

4.3 DIME-C Hardware Implementation 

In the second stage of the algorithm, the application special-

ists and the reconfigurable computing specialists worked 

together to optimise the algorithm, to migrate it to the DIME-

C environment, and to characterise its performance. This 

process took approximately 25 person-hours. The ANSI C 

implementation was optimised for performance in order to 

make for the fairest comparison. The software performance 

was improved by several orders of magnitude during this 

time; otherwise, the software-hardware comparison would 

have been more weighted in favour of the FPGA.  

 

A typical procedure for the porting of algorithms to software 

is to first profile the software-implemented algorithm, then 

implement on the FPGA the functions that represent the ma-

jority of the calculation time. There are disadvantages to this 

approach. It neglects to take into account the data transfers 

that are necessary between the reconfigurable computing 

platform and the microprocessor-based system before and 

after each function call. When factored in, these data trans-

fers can negate any performance improvement in the hard-

ware-implemented function. The approach taken here was to 

implement the entire algorithm on the FPGA, so that the data 

transfer time is negligible in comparison to the compute time. 

This means that all improvements to the computation time of 

a section of the algorithm translate into a measured perform-

ance improvement.  

4.3.1 Implementation Process 

The implementation process consisted of the following steps: 

1. Create a DIME-C project using the original source 

from the ANSI C project. 

2. Adapt the source to allow compilation in both 

DIME-C and ANSI C environments. 

3. Take advantage of the most obvious pipelining op-

portunities to create 1st FPGA implementation. 

4. Examine the source code and the output of DIME-

C, create an equation that expressed the runtime of 

the algorithm in cycles, as a function of the parame-

ters of the algorithm, divided into key sections. 

5. Determine for a typical set of algorithm parameters 

the section that takes up the majority of the runtime, 

and optimise the DIME-C for this section to create 

the 2nd FPGA implementation. 

6. Repeat sections 4&5 to produce the 3
rd
 & 4

th
 FPGA 

implementations. 

4.3.2 Algorithm Performance Characterisation 

When an algorithm is compiled in DIME-C the user is pre-

sented with a graphical representation of the hardware that 

has been generated for implementation on the FPGA. This 

graphical representation informs the user which sections of 

the code have been pipelined and parallelised, and the la-

tency of operations, function calls and loops. Using this in-

formation in conjunction with the source code for the algo-

rithm, one can derive a characteristic function for the algo-

rithm. This gives the number of cycles to run the algorithm as 

a function of the algorithm’s parameters and of the latencies 
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of the various loops and sections of the code. It is possible to 

significantly simplify the resultant characteristic expression 

by factoring out the sections that do not appreciably contrib-

ute to the total run time. 

The characteristic expression derived for the FPGA-

implemented program was as follows: 
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Where De_Dx corresponds to equation (6), Filter is the ap-

plication of the Gaussian filter to the image and Other is all 

other operations in the algorithm. n_iter is the number of 

iterations taken to carry out the simulated annealing algo-

rithm. n1 and n2 are the dimensions of the PSF, c and l are 

the column and line widths of the image respectively. 

As the Filter section was improved, the performance of the 

algorithm improved. The evolution of the characteristic 

equation for Filter through three incarnations of the DIME-

C source can be seen below: 
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The 4th FPGA implementation improved the performance of 

De_Dx. De_Dx would remain the focus of a 5
th
 implementa-

tion. Table 1 below shows how the four successive imple-

mentations of the algorithm on the FPGA platform compared 

with the optimised microprocessor implementation. Data 

transfer times were negligible and did not contribute to the 

result. The results below are for an image of size 800×600, 

with a 5×5 PSF. The algorithm took 100 iterations to com-

plete and the FPGA clock rate was 100MHz.  

5. CONCLUSIONS 

 Latest generation reconfigurable computing platforms are 

suitable for the implementation of entire image processing 

algorithms that require significant levels of floating point 

computation. When using high-level languages significant 

speedup can be measured. Core libraries further simplify the 

task of implementing algorithms. The design time that was 

required to port the algorithm was not disproportionate in 

comparison to the time spent developing and implementing 

the algorithm. Developing characteristic expressions for the 

different algorithmic sections aided in identifying the parts of 

the algorithm that would most benefit from optimisation, 

hence speeding up the development process. 
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Table 1 – Performance Comparison of FPGA implementations versus software 

 Software 1st FPGA 2nd FPGA 3rd FPGA 4th FPGA 

Cycles  7.98×10
10

 8.72×10
10

 4.30×10
10

 2.59×10
10

 

Time in Seconds 216 798.00 87.24 42.96 25.92 

Speedup vs. Software 1 0.27 2.48 5.03 8.33 

% Contribution of:      

    De_Dx  5.02 45.94 93.29 88.91 

    Filter  94.74 51.86 2.24 3.71 

    Rest of Algorithm  0.24 2.20 4.47 7.38 
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