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ABSTRACT
This paper describes an audio event detection system which au-

tomatically classifies an audio event as ambient noise, scream or
gunshot. The classification system uses two parallel GMM clas-
sifiers for discriminating screams from noise and gunshots from
noise. Each classifier is trained using different features, appropri-
ately chosen from a set of 47 audio features, which are selected
according to a 2-step process. First, feature subsets of increasing
size are assembled using filter selection heuristics. Then, a clas-
sifier is trained and tested with each feature subset. The obtained
classification performance is used to determine the optimal feature
vector dimension. This allows a noticeable speed-up w.r.t. wrap-
per feature selection methods. In order to validate the proposed
detection algorithm, we carried out extensive experiments on a rich
set of gunshots and screams mixed with ambient noise at different
SNRs. Our results demonstrate that the system is able to guarantee
a precision of 90% at a false rejection rate of 8%

1. INTRODUCTION

Video-surveillance applications are becoming increasingly impor-
tant both in private and public environments. As the number of
sensors grows, the possibility of manually detecting an event is get-
ting impracticable and very expensive. For this reason, research on
automatic surveillance systems has recently received particular at-
tention. In particular, the use of audio sensors in surveillance and
monitoring applications has proved to be particularly useful for the
detection of events like screams or gunshots [2][11]. Such detection
systems can be efficiently used to signal to an automated system that
an event has occurred with high probability and, at the same time,
to enable further processing like automatic video-camera steering.

Audio-based surveillance stems from the field of automatic au-
dio classification and matching. Traditional tasks in this area are
speech/music segmentation and classification [7][9] and audio re-
trieval [14]. More recently, specific works covering the detection of
particular classes of events for multimedia-based surveillance have
been developed. For example, detection systems specifically de-
signed for impulsive sound recognition consist of a segmentation
step, in which the presence of an event is detected, followed by a
classification step, which refines the result assigning a class label to
the event. The results reported in [4] show that these systems fail
under real-world conditions reaching less than 50% accuracy at 0
dB SNR. In the SOLAR system presented in [6], the segmentation
step is avoided by decomposing audio tracks into short, overlapping
audio windows. For each window, a set of 138 features is extracted
and evaluated by a series of boosted decision trees. Though effi-
cient in real time computations, the SOLAR system suffers from
large differences in classification accuracy from class to class.

More recent works have shown that a hierarchical classification
scheme, composed by different levels of binary classifiers, generally
achieves higher performance than a single-level multi-class classi-
fier. In [1] a hierarchical set of cascaded Gaussian Mixture Models
(GMM) is used to classify 5 different sound classes. Each GMM

The work presented was developed within VISNET II, a network of ex-
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is tuned using only one feature from a feature set including both
scalar features (e.g. ZCR - Zero Crossing Rate) or vector features
(e.g. Linear Log Frequency Cepstral Coefficients). Reported re-
sults show that the hierarchical approach yields accuracies from 70
to 80% for each class, while single level approaches reach high ac-
curacies for one class but poor results for the others.

The hierarchical approach has also been employed in [11] to
design a specific system able to detect screams/shouts in public
transport environments. After a preliminary segmentation step, a
set of perceptual features such as MFCC (Mel-Frequency Cepstral
Coefficients) or PLP (Perceptual Linear Prediction) coefficients are
extracted from audio segments and used to perform a 3-levels clas-
sification. First, the audio segment is classified either as noise or
non-noise; second, if it is not noise, the segment is classified ei-
ther as speech or not speech; finally, if speech, it is classified as a
shout or not. The authors have tested this system using both GMMs
and Support Vector Machines (SVMs) as classifiers, showing that
in general GMMs provide higher precision. A different technique
is used in [2] to detect gunshots in public environments. In this
work, the performance of a binary gunshot/noise GMM classifier
is compared to a classification scheme in which several binary sub-
classifiers for different types of firearms are run in parallel. A final
binary decision (gunshot/noise) is taken evaluating the logical OR
of the results of each classifier. In this way, the false rejection rate
of the system is reduced by a 50% on average with respect to the
original binary classifier.

In this paper we propose a system that is able to accurately de-
tect two types of audio events: screams and gunshots. Our approach
is different from the previous works in the following aspects. First,
we extract a larger set of features, including some descriptors like
spectral slope and periodicity, and innovative features like correla-
tion roll-off and decrease. To the authors’ knowledge, these features
have never been used for the task of sound-based surveillance. We
show that they provide a significant performance gain. Second, we
provide an exhaustive analysis of the feature selection process, mix-
ing the classical filter and wrapper feature selection approaches. In
the rest of the paper, the audio detection system is described in de-
tail. In Section 2 the families of features used in the system are
presented. Section 3 describes the feature selection process, Sec-
tion 4 details the classification architecture, which is composed by
two parallel GMM classifiers, while Section 5 provides the results
of classification using the selected features. In Section 6 we discuss
some final considerations and future works.

2. AUDIO FEATURES

A considerable number of audio features have been used for the
tasks of audio analysis and content-based audio retrieval. Tradi-
tionally, these features have been classified in temporal features,
e.g. Zero Crossing Rate (ZCR); energy features, e.g. Short Time
Energy (STE); spectral features, e.g. spectral moments, spectral
flatness; perceptual features, e.g. loudness, sharpness or Mel Fre-
quency Cepstral Coefficients (MFCCs). In this work, we have cho-
sen to discard audio features which are too sensitive to the SNR
conditions, like STE and loudness. In addition to the traditional
features listed above, we employ some other features which have

©2007 EURASIP 1216

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



not been used before in similar works, such as spectral distribution
(spectral slope, spectral decrease, spectral roll-off) and periodicity
descriptors. In this paper we also introduce a few innovative fea-
tures based on the auto-correlation function: correlation roll-off,
correlation decrease and correlation slope.

These features are similar to spectral distribution descriptors
(spectral roll-off, spectral decrease and spectral slope), but, in lieu
of the spectrogram, they are computed starting from the auto-
correlation function of each frame. The goal of these features is
to describe the energy distribution over different time lags. For im-
pulsive noises, like gunshots, much of the energy is concentrated
in the first time lags, while for harmonic sounds, like screams, the
energy is spread over a wider range of time lags. Features based
on the auto-correlation function are labeled in two different ways,
filtered or not filtered, depending on whether the autocorrelation
function is computed, respectively, on a band-pass filtered version
of the signal or on the original signal. The rationale behind the
filtering approach is that much of the energy of some signals (e.g.
screams) is distributed in a relatively narrow range of frequencies;
thus the autocorrelation function of the filtered signal is much more
robust to noise. In this paper, the limits of the frequency range for
filtering the autocorrelation function have been fixed to 300− 800
Hz: experimental results have shown that most of the energy of the
screams events is concentrated in this frequency range.

To evaluate the discrimination power of the selected features,
two feature sets have been created. The first set contains 36 tra-
ditional features (ZCR, Spectral Flatness, spectral moments, 30
MFCC coefficients). The second set is composed by the the pre-
vious features plus the following descriptors: periodicity, spectral
distribution descriptors and correlation distribution descriptors, for
a total size of 47 features. Table 1 lists the feature set composi-
tion. All the features are extracted from 23ms analysis frames (at a
sampling frequency of 22050 Hz) with 1/3 overlap.

3. FEATURE SELECTION

Starting from the full set of 47 features, we can build a feature vec-
tor of any dimension l, 1 ≤ l ≤ 47. It is desirable to keep l small in
order to reduce the computational complexity of the feature extrac-
tion process and to limit the over-fitting produced by the increas-
ing number of parameters associated to features in the classification
model.

In previous works on audio surveillance systems, the “best” fea-
ture vectors have been empirically determined [6], without adopting
an objective performance metrics. In this paper, we discuss an auto-
matic procedure aimed at selecting the best feature set, according to
some objective performance indicator. To this end, two main feature
selection approaches have been discussed in literature [3]. In the
filter method, the feature selection algorithm is independent of any
classifier, filtering out features that have little chance to be useful in
the analysis of data. The filter methods are based on performance
evaluation metrics calculated directly from the data, without direct
feedback from a particular classifier used. The second approach,

# Feature Type Features Ref.

1 Temporal ZCR [7]
2-6 Spectral 4 spectral moments +

SFM
[8]

7-36 Perceptual 30 MFCC [12]

37-39 Spectral distri-
bution

spectral slope, spectral
decrease, spectral roll-
off

[8]

40-47 Correlation-
based

(filtered) periodicity, (fil-
tered) correlation slope,
decrease and roll-off

[7][8]

Table 1: Audio features used for classification.
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Figure 1: Hybrid feature selection system.

known as wrapper approach, consists of evaluating a feature vec-
tor on the basis of classification results, obtained using that specific
subset of features. Therefore, these methods exploit some form of
feedback provided by the classifier (e.g. accuracy). They tend to
outperform filter methods, but at a much higher computational load.

The feature selection process adopted in this work is a hybrid
filter/wrapper method. First, a feature subset of size l is assembled
from the full set of features according to some class-separability
measure and a heuristic search algorithm, as detailed in Section 3.1.
The so-obtained feature vector is evaluated by a GMM classifier,
which returns some classification performance indicator related to
that subset (this procedure is explained in Section 3.2). Repeating
this procedure for different l’s, one can choose the feature vector
dimension that optimizes the desired target performance (see Fig-
ure 1). In other words, the hybrid approach splits the problem of
feature selection in two subproblems: the choice of the feature sub-
set content, performed with a filter technique, and the selection of
feature vector dimension, which is carried out in a wrapper fashion.
This combined approach allows a considerable speedup in terms of
resources needed for computation w.r.t. a pure wrapper approach,
while giving good results for what concerns the overall classifica-
tion performance.

3.1 Selection of a Feature Vector given a size l

Ideally, the problem of selecting a subset of l features out of the m
originally available requires to evaluate all the

(m
l
)

possible combi-
nations of feature vectors of size l. In practice, the computational
complexity is too high. Therefore heuristic methods are used to
explore the feature space, searching for a (locally) optimal feature
vector. There are two kinds of search algorithms [13]: scalar meth-
ods, which are based on criteria evaluating the class separability of
individual features, and vectorial methods, which are based on cri-
teria evaluating the class separability of a vector of features.

3.1.1 Scalar Selection

In this work, we adopt a feature selection procedure described in
[13]. The core idea of this technique consists in building up a fea-
ture vector choosing the features that best discriminate the different
classes, while at the same time minimizing the correlation between
selected features. The method builds a feature vector iteratively,
starting from the most discriminating feature and including at each
step k the feature r̂ that maximizes the following function:

J(r) = α1C(r)− α2

k−1 ∑
i∈Fk−1

|ρri|, for r 6= i. (1)

In words, Eq. 1 says that the feature to be included in the feature
vector of dimension k has to be chosen from the set of features not
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yet included in the feature subset Fk−1. The objective function
is composed of two terms: C(r) is a class separability measure of
the rth feature, while ρi j indicates the cross-correlation coefficient
between the ith and jth feature. The weights α1 and α2 determine
the relative importance that we give to the two terms. In this paper,
we use either the Kullback-Leibler divergence (KL) or the Fisher
Discriminant Ratio (FDR) to compute the class separability C(r)
[13].

3.1.2 Vectorial Selection

The vectorial feature selection is carried out using the floating
search algorithm [10]. This procedure builds a feature vector it-
eratively and, at each iteration, reconsiders features previously dis-
carded or excludes features selected in previous iterations from the
current feature vector. Though not optimal, this algorithm provides
better results than scalar selection, but with an increased computa-
tional cost. The floating search algorithm requires the definition of
a vectorial class separability metrics. In the proposed system, we
use either one of the following objective metrics [13]:

J1 =
trace(Sm)
trace(Sw)

(2)

J2 =
det(Sm)
det(Sw)

(3)

where Sw is the within-class scatter matrix, which carries informa-
tion about intra-class variance of the features, while Sm = Sw + Sb
is the mixture scatter matrix; Sb, the between-class scatter matrix,
gives information about inter-class covariances.

3.2 Selection of the Feature Vector Dimension l

The optimal vector dimension is determined using a wrapper ap-
proach. For each dimension l, the aforementioned feature selec-
tion algorithm determines the best feature subset for either gun-
shot/noise or scream/noise classification; the performance of clas-
sification using this feature vector are evaluated using the GMM
classifier described in the next section. The two performance in-
dicators we take into consideration are the precision and the false
rejection rate (FR), defined as follows:

precision =
number of events correctly detected

number of events detected
(4)

FR =
number of events not detected

number of events to detect
, (5)

where the term “event” denotes either a scream or a gunshot, de-
pending on which of the two binary classifiers we are considering.
The rationale behind the choice of precision and false rejection rate
as performance metrics is that in an audio-surveillance system the
focus is on minimizing the number of events “missed” by the con-
trol system, while at the same time keeping as small as possible the
number of false alarms.

We evaluate the precision and false rejection rate for feature
vectors of any dimension l. Figure 2 shows how the performance
vary as l increases, for the case of scream events (analogous re-
sults are obtained with gunshot samples). From these graphs, it is
clear that good performance may be obtained with a small number
of features, while increasing l above a certain dimension l̂ (e.g. 12
in the case of screams as can be argued by figure) performance does
not improve significantly. In this work, l̂ has been chosen empiri-
cally by inspection of the graphs shown in Figure 2. More formal,
automatic criteria may be formulated to take in consideration how
much of the overall performance is reached with each dimension,
weighted by the number of features used. This kind of trade-off
optimization will be investigated in a further work.
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Figure 2: Classification precision and false rejection rate of scream
with increasing feature vector dimension l.

4. CLASSIFICATION

The event classification system is composed by two Gaussian Mix-
ture Model (GMM) classifiers that run in parallel to discriminate,
respectively, between screams and noise, and between gunshots and
noise (see Figure 3). Each binary classifier is trained separately
with the samples of the respective classes (gunshot and noise, or
scream and noise), using the Figueiredo and Jain algorithm [5].
This method is conceived to avoid the limitations of the classical
Expectation-Maximization (EM) algorithm for estimating the pa-
rameters of a mixture model: through an automatic “component an-
nihilation” procedure, the Figueiredo-Jain algorithm automatically
reduces the number of components of the mixture according to an
information-theoretic criterion. This way, the issue of selecting the
number of components and the problem of determining adequate
initial conditions are ruled out; furthermore, singular estimates of
the mixture parameters can be automatically avoided by the algo-
rithm.

For the testing step, each frame from the input audio stream
is classified independently by the two binary classifiers. The deci-
sion that an event (scream or gunshot) has occurred is then taken by
computing the logical OR of the two classifiers.
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Figure 3: Classification scheme.

5. EXPERIMENTAL RESULTS

In our simulations we have used audio recordings taken from
movies soundtracks and internet repositories. Some screams have
been recorded live from people asked to shout into a microphone.
Finally, noise samples have been recorded live in a public square of
Milan.

Audio signals of gunshot and scream classes have been mixed
with ambient noise according to some prefixed SNR. We have tested
the system with two kinds of experiments. In the first experiment,
we want to assess the performance improvements given by the in-
troduction of the additional features described in Section 2. In the
second experiment, we test the system performance under different
SNR conditions of training and test sequences.

5.1 Performance gain with new features
In this experiment we evaluate the performance gain of the classifier
obtained adding the new features described in Section 2, using k-
fold cross validation, with k = 10. Figure 4 compares precision and
FR rate for scream/noise discrimination, using 2, 5, 10, 15 and 20
features, chosen from the set of standard 36 features, denoted as the
“old” feature set, and the set of 47 features, called the “new” feature
set. In both cases, we have selected features with the vectorial J2
criterion, which turns out to be the best heuristics from Figure 2.
The performance metric used is accuracy, defined as the number of
correct detections over the total number of test samples. Analogous
results may be produced for the case of gunshot/noise classification.
It must be pointed out that the feature vectors assembled by the
vectorial selection algorithm contain mainly some of the additional
features presented before (e.g., the feature vector of size 5 in figure
contains, among other descriptors, periodicity, spectral roll-off and
correlation decrease).

5.2 Effects of SNR on performance
This experiment aims at verifying the effects of the noise level on
the training and test sets. We have added noise both to the audio
events of the training set and to the audio events of the test set,
changing the SNR from 0 to 20dB, with a 5dB step. Making the
cross-product of the possible SNR values for training and test se-
quences, we have built 52 classification problems. The performance
indicators we have used in this test are the false rejection rate, de-
fined in (5), and the false detection rate (FD), defined as follows:

FD =
number of detected events that were actually noise

number of noise samples in the test set
, (6)

where, as usual, an event could be both a scream or a gunshot. The
results for both scream and gunshot classification are reported in
Figure 5. As expected, performance degrades noticeably as the
SNR of both training and test sequences decreases. In other words,
as the energy of the event is decreased compared to the energy of
background noise, the results in terms of false rejection rate be-
come poor. In particular, training database with high SNR (e.g.
20dB) provide good performance in terms of low false detection
rate, while if the training samples are highly corrupted by noise
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Figure 4: Comparison of accuracy with different feature vector di-
mensions for scream/noise discrimination. The selection algorithm
is vectorial J2.

(e.g. 0dB SNR), the false detection rate tends to grow up. On the
other hand, increasing the SNR of test sequence brings down the
curves in terms of false rejection rate; in other words the number
of events missed by the classifier grows as the noise level of tested
samples increases. A combination of high training SNR and low
testing SNR for the case of gunshot/noise discrimination can dra-
matically deteriorate the false rejection rate, as illustrated in part (a)
of Figure 5: with training database at 20dB SNR and test sequences
at 0dB SNR, the system is able to identify only about 15% of the
actual events occurred. This is due to the noisy nature of gunshots,
which at low SNR are easily confused with ambient noise. It must
be said, however, that in realistic conditions it is quite improbable
that a weapon firing in the range of a video-surveillance system pro-
duce a sound with such a low SNR.

This experiment illustrates the trade-off existing between false
rejection and false detection rate. According to the desired perfor-
mance of the system, one should choose the appropriate SNR for
the training database.

5.3 Combined system
Putting together the scream/noise classifier and the gunshot/noise
classifier we can yield a precision of 90% with a false rejection
rate of 8%, using scream samples at 10dB SNR and gunshot sam-
ples at 15dB SNR. We have used a feature vector of 12 features,
selected with the J2 heuristic, for scream/noise classification, and
a feature vector of 10 features, selected with the J1 criterion, for
gunshot/noise classification. The two feature vectors are reported
in Table 2.

6. CONCLUSIONS

In this paper we analyzed a classification system able to detect
events such as gunshots and screams in noisy environments. We
have considered a set of audio features larger than the sets usually
adopted in this kind of tasks. We have provided a method for choos-
ing the composition of the feature vector and for evaluating his di-
mension mixing filter selection criteria and wrapper validation of
results. This approach allows to reduce considerably the dimension-
ality of the problem, producing, with a small computational cost, a
feature vector which gives acceptable results. We have drawn the at-
tention on the necessary trade-off between false rejection and false
detection rate, testing the system under very noisy conditions. With-
out using features directly related to the local energy of signals such
as short time energy, we are able to obtain an accuracy of 90% and
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# Gunshot/Noise classifier Scream/Noise classifier

1 Spectral Centroid SFM
2 MFCC 1 Spectral Skewness
3 MFCC 2 MFCC 2
4 MFCC 3 MFCC 3
5 MFCC 11 MFCC 9
6 MFCC 28 MFCC 12
7 MFCC 29 (filtered) periodicity
8 MFCC 30 correlation decrease
9 (filtered) periodicity spectral slope

10 ZCR correlation slope
11 spectral decrease
12 periodicity

Table 2: Feature vectors used in the combined system
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Figure 5: False rejection rate as a function of false detection rate
for various SNR training database and test sequences. l̂ is 12 for
scream events and 10 for gunshot events.

a false rejection rate of 8% with the combined system.
Future work will be dedicated to the formalization of feature di-

mension selection, by formulating a trade-off optimization problem
which optimizes simultaneously different classification and compu-
tational performance metrics.
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