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ABSTRACT
Heart sound is a valuable biosignal for early detection

of a large set of cardiac diseases. Ambient and physiological
noise interference is one of the most usual and high prob-
able incidents during heart sound acquisition. It tends to
change the prominent and crucial characteristics of heart
sound which may possess important information for heart
disease diagnosis. In this paper, we propose a new method
to detect ambient and internal body noises combined with
heart sound. The algorithm is based upon the periodic na-
ture of heart sounds and physiologically inspired criteria. A
small segment of clean heart sound exhibiting periodicity in
time as well as in the frequency domain is first detected and
applied as a reference signal in sorting noise from the sound.
The achieved average sensitivity and specificity are 94% and
97%, respectively.

1. INTRODUCTION

Cardiovascular diseases are the leading cause of death in de-
veloped countries. In Europe the prevalence of chronic car-
diovascular diseases is between 20% and 45% of all deaths.
Being a disease tightly connected to aging, it is observed that
incidence is on the rising due to the extended life expectancy.
The solution to this health problem is believed to be changing
the focus from curative healthcare to preventive healthcare.
This is commonly believed to be achievable by fostering pre-
ventive lifestyle as well as early diagnosis. In this sense long
term tele-monitoring is a promising tool to achieve early di-
agnosis and, therefore, avoiding potentially life-critical situ-
ations as well as aggressive and expensive treatments. There-
fore, current research trends in this direction are to integrate
system solutions into ordinary daily objects, such as func-
tional clothes with integrated textile or hard sensors. In order
to be cost effective and usable for long time periods, these
tools require intelligent data analysis algorithms to be able
to autonomously perform diagnostic functions and to sup-
port users in solving problems, hence requiring low compu-
tational algorithms that could be run in real-time using low
power processing devices. Under the analysis of vital signals
(e.g. heart sound) using computational algorithm, the noise
cancelation during signal acquisition is a primary and indis-
pensable task. This task is imperative for reliable diagnostic
feature extraction.

Heart sound is a valuable biosignal for early detection of
a large set of cardiac diseases. Unfortunately, heart sound
is more sensitive to noise than ECG. Many researchers have
applied ECG as a reference or marker to find the ambient
noise. In [1] an ECG was applied for heart beat detection.
Subsequently noise presence detection was performed by

beat by beat power spectrum cross correlation. A very well
known method for speech enhancement based upon spectral
domain Minimum-Mean Squared Error (MMSE) estimation
was applied to reduce noise affect in heart sound [2]. This
method reduces white noise from heart sound while S3 and
S4 sounds were prevented using ECG gating. Another at-
tempted method for noise cancelation in real time was devel-
oped using an extra acoustic sensor to capture the environ-
mental noise. This additional signal provides a noise signal
for subtracting environmental noise from the contaminated
heart sound signal [3]. Other methods can be found in litera-
ture which involve filtering with a certain band of frequencies
[4]. In order to develop cost effective, portable and practi-
cal systems, the noise removal algorithm must fully/paritally
avoid to be dependent on ECG or any non-cardiac sound sen-
sors.

In this paper, an algorithm is proposed for non-cardiac
sound detection from heart sound during acquisition. The pe-
riodicity of heart sound components (namely S1 and S2) is an
inspiration to detect non-cardiac sounds in heart sounds. The
proposed method first searches for a clean heart sound seg-
ment as a reference signal based on periodicity. Afterwards,
the spectral energy of the reference signal is correlated with
the rest of heart sound in real time. The heart sound segments
which exhibit low correlation coefficients with the reference
heart sound signal are assessed as non-cardiac sounds. This
method is able to detected almost every kind of physiological
and environmental non-cardiac sound.

The paper is organized as follows: in the second section,
the proposed method is thoroughly explained, the third sec-
tion introduces results and discussion, and finally some con-
clusions are presented in the fourth section.

2. METHOD

In order to extract reliable diagnostic features from heart
sound it is important to first suppress noise. During heart
sound acquisition many external body noises such as am-
bient noise, as well as internal body noises such as heavy
breathing, swallowing sound, speech etc., may be cap-
tured. These noises are linearly/nonlinearly mixed with heart
sound. Therefore, the suppression of these noises in heart
sound is not a straightforward problem. Furthermore, even a
small ambiguity in suppression may lead to wrong diagnosis
based on heart sound features. However, it is rather probable
to assure that heart sounds used for diagnosis are not con-
taminated. The strategy proposed in this paper is to detect
the contaminated sound segments and to exclude them from
further processing.

In order to accomplish the objective (see figure 1), first
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features are extracted which are used to detect a small seg-
ment of pure heart sound during acquisition. This segment is
used as a reference signal and compared with the rest of the
acquired heart sound in order to detect contaminated heart
sound segments. The required features, i.e. zero crossing
rate and periodicity of S1 and S2 heart sound components in
time and frequency domain, and involved steps in the algo-
rithm for the detection of the reference signal as well as its
comparison with the subsequent heart sounds are elaborated
in this section.
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Figure 1: Flow Chart of the Proposed algorithm.

2.1 Feature Extraction
The core part of the proposed method is finding the reference
signal. The reference signal must be highly representing the
attained pure heart sound.

Two major features are taken into account in finding the
reference sound:
• Zero-Crossing Rate
• Periodicity (Time/Frequency domain)

In the process of extracting these features, the applied analy-
sis window are different based upon the prerequisites of the
respective features.

2.1.1 Zero-Crossing Rate

Mostly heart sounds fall into low frequency range (40-
200Hz), while in exceptional cases, e.g. heart sound pro-
duced by mechanical heart valves or severe murmur, this
range may be increased. Withstanding this observation, it
is found that almost every kind of human cardiac sound ex-
hibits zero-crossing rate of 0.45 per 100 ms. This feature
has the potential to discriminate noise sources with high fre-
quency contents such as speech, coughing sound, rubbing
sound, etc. The occurrence of these type of noise sources
is highly probable during acquisition. Let x(t) be the heart

sound undergoing acquisition, the Zero-crossing rate of the
ith 100 ms segment is formulated as follows:

ZCRi =
1

N1

N1

∑
j=1
|sgn(x( j))− sgn(x( j−1))|, (1)

where N1 is the number of samples in the selected window.
The non-cardiac sound, namely very high frequency sounds
are identified (see figure 2).
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Figure 2: Zero crossing rate in due to speech segments pres-
ence in heart sound.

2.1.2 Autocorrelation based Periodicity

One of the most noticeable characteristic of heart sound is
periodicity; even though heart cycles change with very un-
predictable manner in arrhythmic heart patients, nonetheless
periodicity/quasi-periodicity of its main components (S1 or
S2 sounds) can be observed. Non-cardiac sounds immensely
influence the identification of the regular occurrence of heart
sound components. In absence of many non-cardiac sounds,
it is straightforward to measure periodicity of pure heart
sounds based on the autocorrelation function. Pure heart
sounds exhibit periodicity/quasi-periodicity in time domain
as well as in the frequency domain.

(A) Periodicity in the Time domain: The envelopes of
heart sound components are extracted by applying the
Hilbert transform followed by the Gammatone band-pass
filter [5]. Next, the autocorrelation function of the envelope
is computed. Typically, it will exhibit pronounced peaks for
the main heart sound components, i.e. the S1, S2 and mur-
mur components. The autocorrelated values are normalized
by autocorrelation values of a chosen windowing function,
e.g. the Hanning window. Let xe(t) be the envelope of the
heart sound and let y(t) be its autocorrelated function such
that

y(t) =
∫ N

0 xe(t)w(t)∗ xe(t− τ)w(t− τ)dτ
∫ N

0 w(t)∗w(t− τ)dτ
, (2)

In equation (2), w(t) is the Hanning (windowing)
function and N is the number of samples in a given segment
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of heart sound. The stronger peaks are detected using the
algorithm described in [6]. This algorithm exhibits a high
sensitivity in peak detection, therefore, usually several false
weak peaks are detected. To solve this, the number of strong
peaks in y(t) are found using estimated duration (or heart
rate) of heart cycles in a given segment of the analysis signal.
Once all strong peaks have been detected, the periodicity
is checked using radial distance between two contiguous
heart cycles. The heart rate estimation and periodic cycles
verification procedures are as follows:

(A1) Heart Rate Estimation: Heart rate, in a given
segment of heart sound, is calculated using the large
difference between two first singular values of rearranged
autocorrelation function of the envelopes [7]. Let y(t) be
periodic with period T , i.e. y(t + T ) = y(t). At rest T is
between 500 ms and 1200 ms (heart rate is between 50
beats/min and 120 beats/min) for the typical population in
rest state. Let Y be the data matrix which is constructed
by stacking y(t) samples after every T ms using following
arrangement,

Y =




y(1)...y(T )
y(T +1)...y(2T )

.

.
y((m−1)T +1)...y(mT )


 , (3)

where m is the number of periodic analysis segments in
a given segment of heart sound. If matrix Y has repeated
rows, then it will have low (eventually one) non-zero singular
values. The non-singular values are found by singular value
decomposition (SVD) of Y , and rearranged such that σ1 ≥
σ2 ≥ σ3...≥ σm. In case of periodic y(t) the singular values
rapidly decrease. Hence, periodicity can be measured using
following relation,

ρ = (σ2/σ1)2, (4)

very low value of ρ implies strong periodicity in a signal.
In the process of estimating the heart rate, Y is constructed
varying T . The T , which is responsible for the minimum ρ ,
is the estimated duration of a heart cycle. The estimated heart
rate enables to find the prominent peaks in y(t). Since strong
peaks are directly related to the main components in the heart
sound which occur only once per heart cycle (see in figure 3).

(A2) Periodicity Check Criterion: The all stronger peaks of
y(t) are detected in previous step, which enables in finding
shape similarity between two heart cycles (contiguous pair
of stronger peaks). The similarity is measured by radial
distance between two vectors. Let y1(t) and y2(t) be the two
vectors, the radial distance is given by,

Cos(θ) =
< y1(t),y2(t) >

| y1(t) | | y2(t) | , (5)

where < . > is the inner product operator and | . | represents
mean square root value of the vectors. In all situations of
similar periodic shapes, Cos(θ) value lies in the vicinity of
1.0, as is shown in figure 3(c).

(B) Periodicity in the Frequency domain: The period-
icity of heart sounds in time domain may not be influenced
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Figure 3: (a) Heart Sound Energy; (b) Heart Sound Enve-
lope; (c) Autocorrelation function of the envelope with peaks
identification.

by the presence of many non-cardiac sounds. For instance,
swallowing, breathing or high pitched voice can not be iden-
tified using the time domain periodicity detection technique.
However, the influence of the noise source in heart sound
periodicity can be seen in the frequency domain. Therefore,
spectrogram is adapted to find periodic patterns in frequency
bands. Let S( f , t) be the short Fourier transform of x(t), i.e.

S( f , t) =
∫ M

0
x(τ)w(t− τ)exp(

−2 j f πτ
M

)dτ, (6)

where M is the window size. It has been observed in nor-
mal/abnormal heart sounds that most power is concentrated
up to frequency 1.2kHz. Hence, 15 frequency bands from
the spectrogram matrix are taken for periodicity verification,
as it is depicted in figure 4. It should be noticed that normal
heart sounds exhibit regular patterns in these frequency
bands which are linearly independent. These linear indepen-
dencies may monotonically decrease/increase in different
types of heart sound, i.e heart sounds from prosthetic valve
click and native valve clicks. In this situation, the peaks in
power are almost aligned. These phenomenons are seen in
the heart sounds which exhibit periodicity in the frequency
domain. The methods for the verification of S1 and S2
periodicity in frequency domain using 15 frequency bands
and the criterion for power peaks alignment in these bands
are explained next.

(B1) Pattern Detection in the Frequency Bands: In or-
der to extract periodic patterns from spectrogram matrix, the
rows are autocorrelated as given in equation (2). Let Sk( f , t)
be the autocorrelated function of the kth frequency band in
the spectrogram (see figure 4). Furthermore, it is depicted
that autocorrelated power in 1-15 frequency bands are in
regular patterns, where the stronger peaks occur almost
at the same time, and widths of these peaks decrease in
higher frequency bands. On the other hand, the peak widths
increase in absence of signal power in the high frequency
bands; usually, strong peak widths are absent in native heart
valve click sound. Therefore, these observations inspire
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in building the heuristic which may be applied to verify if
the cardiac signal is clean from contamination. One of the
observations is linear independence of the rows of Sk( f , t).
Regarding linear independency measurement, the SVD tech-
nique is applied again as was introduced previously. Since
the peak widths in Sk( f , t) increase or decrease in ascending
frequency bands, therefore, each five contiguous ascending
frequency bands are grouped according to equation (7) and
singular values are computed using the previously described
SVD technique.

Sg(k,k+4)( f , t) =




Sk( f , t)
Sk+1( f , t)

.

.
Sk+4( f , t)


 ,k = 1,6,11. (7)

In equation (7) Sg(k,k+5) is the matrix formed by grouping
of Sk( f , t) rows for each five ascending frequency bands.
The SVD of matrix Sg(k,k+5)( f , t) provides singular values
which reveal linear independence. In the equation (4), ρ
exhibits low value for linear dependent rows. Let ρ1, ρ2 and
ρ3 be the singular values ratios of the matrix Sg(1,5)( f , t),
Sg(5,10)( f , t) and Sg(10,15) respectively, then the most
significant observations regarding pure heart sounds are:
ρ1 > ρ2 > ρ3 or ρ1 < ρ2 < ρ3. In the situations of non
cardiac sounds these sequences are violated. It should be
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Figure 4: (a) Spectrogram of a pure heart sound exhibiting
1-15 frequency bands; (c) Autocorrelation function Sk( f , t)
of spectral power in 15 frequency bands, in this situation ρ
increases in high frequency bands.

noted that the strong peaks are due to heart valve clicks. S1
and S2 sound in native valves, it is observed that the width
and hight of the peaks decrease in high frequency bands
while in prosthetic valve heart sound peak widths decrease
but peaks heights increases due to high power availability in
high frequency bands. Therefore, in prosthetic valve heart
sounds linear independency monotonically decreases in the
high frequency bands.

(B2) Peak Alignment in the Frequency Bands: As it
has already been explained the peaks are due to S1 and S2
heart sounds, therefore, they should exhibit alignment in
Sg(k,k+5)( f , t) frequency bands. Otherwise, it is considered
that these peaks are due to noise. In order to check the
alignment, all main peaks are found using the previously
described peak detection technique. Afterwards, defining
a time tolerance (±5% of the time of first peak), all peaks
alignment are inspected.

2.2 Proposed Algorithm

The previous subsection introduced the feature extraction
procedure as well as the preparation phase required to
detect the reference heart sound. In this section, the actual
detection procedure applied for this purpose as well as the
detection method of the contaminated heart sound segments
are described. The detection of the reference heart sound
includes the following steps:

Step1: In the first step, zero crossing rate per 100 ms
window is computed. If ZCR/100 ms is greater than 0.45
then the segment is classified as noise.

Step2: If the heart sound segment verifies the periodic-
ity constraints, then a similar heart sound window to the
left is searched in order to establish the end of the reference
signal.

Step3: After selecting the reference signal, it is treated
as an ideal signal to assess the rest of the heart sound
segments. In this step, spectral root mean square of the heart
sound signal is calculated from following equation,

Srms( f , t) =

√∫ Tw

0
| S( f , t) |2dt, (8)

where Tw is the size of the reference signal. The reason of ap-
plying the root mean square over the spectrogram is to avoid
signal power estimation. Root mean square of the spectro-
gram provides an estimate of the power distribution in fre-
quency domain, see figure 5(c). Let Sre f

rms( f , t) and Stest
rms( f , t)

be the spectral root mean square for the reference and the test
heart sound signals respectively, then validation is performed
using the following condition,

CorrCoe f (Sre f
rms( f , t),Stest

rms( f , t)) > th, (9)

where CorrCoe f is the correlation coefficient between two
signals. The threshold th value is defined as 0.99 in the equa-
tion (9).

In order to apply the described algorithm, the analysis
window size is first decided which is chosen 100 ms in the
present work. Hence, the algorithm starts after acquiring 100
ms of heart sound. However, the periodicity validation starts
after 3 seconds. This analysis window can be physiologically
justified with the duration of heart cycles. It requires to con-
sider sufficient signal duration in order to check convincing
periodicity. An interesting example is presented in figure 5,
where the reference signal is found and subsequently con-
taminated heart sound segments are detected.
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3. RESULT AND DISCUSSION

3.1 Material and Data Collection
Heart sounds were recorded from different patients with
prosthetic valve implants (both Mechanical and Biopros-
thetic) one month after surgery using an electronic stetho-
scope from Meditron in University Hospital of Coimbra, Por-
tugal. The data set is collected using patients with arrhyth-
mic and non-arrhythmic hearts. These heart sounds include
several non-cardiac sounds. The used stethoscope has an ex-
cellent signal to noise ratio and extended frequency range (20
- 20,000 Hz). All sound samples were digitized with 16-bit
resolution and 44.1 kHz sampling rate.

3.2 Experimental Results
The algorithm was tested with several heart sound signals
which were contaminated by several types of non-cardiac
sounds. The tested data set includes 86 heart sound sam-
ples. Each sound sample includes regular heart sound as well
as mixtures with non-cardiac sounds, such as high/low pitch
speech, several types of environmental sounds, human made
ambient noise, and internal body sounds (swallowing, heavy
breathing, speech). The recording length of all heart sounds
was not more than 2 minutes. In sake of algorithm valida-
tion, some heart sounds purposely recorded with several no-
cardiac sounds. The algorithm performs with the noticeable
average sensitivity of 97% and average specificity of 94%
regardless of heart sound types.

The main challenge in the proposed approach is the se-
lection of the reference heart sound. In the performed tests
the algorithm was always able to find an appropriate refer-
ence signal, even in those situations when noise was present
at the beginning of the heart sound.

4. CONCLUSIONS

A new algorithm for non-cardiac sound detection, without
using ECG as a reference signal, in realtime heart sound
acquisition was proposed. The algorithm is composed by
two main step: first a reference signal composed by a com-
plete heart cycle is detected. Secondly, this reference sig-
nal is compared to subsequent heart sound segments. The
first phase of the algorithm is slightly computationally inten-
sive. However, once the reference signal has been detected,
subsequent processing is of low complexity. At this stage,
non-cardiac sounds are segregated from heart sound, subse-
quently analysis of heart sounds can be performed. Further-
more, the method enables near-real time application using
low power embedded systems, such as those require to im-
plement in eHealth solutions.
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