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Abstract—In many speech separation and enhancement tech-
niques, establishing a statistical model like a Vector Quantization
(VQ) is a must to handle the so-called model-based approaches.
It is also desirable to establish a trade-off between sparsity
and accuracy in the quantizer. To do so, in this paper we
present split-VQ for sinusoidal parameters. We observed that
sinusoidal parameters including amplitudes and frequencies, are
most capable to be used as our features for split-VQ since they
can be easily mapped to a tree-like structure. We demonstrate
that using such split-VQ along with fixed dimension sparse
sinusoidal parameters can significantly result in better source
model compared with common STFT feature vectors in terms
of objective and subjective measures in model-based approaches
like monaural sound separation.

Index Terms—Split-VQ, Sinusoidal parameters, Spectral Dis-
tortion, SSNR.

I. INTRODUCTION

Establishing a perfect source model has been introduced
as a challenging and difficult topic for decades. For instance,
consider the so-called single-channel sound separation (SCSS)
problem in which a target speech signal is mixed with other
interfering speaker signal recorded by a single channel. In such
applications, separating mixture requires using the spectrum
amplitude of the short-time Fourier transform (STFT) often
selected as a primary feature. The objective for separation
is to express the spectrum of the mixed signal in terms of
the spectra of the underlying speaker signals. This is gener-
ally accomplished, by fitting some statistical model such as
Gaussian mixture models (GMM) [6], or vector quantization
(VQ) [5] which are commonly used in order to model the
underlying speakers features in the training phase. Then in
the test phase, two speaker models are combined to model the
given mixed signal and the states that best match the mixed
signal are decoded based on some criteria e.g., minimum mean
square error (MMSE). However, each one of the statistical
models mentioned above still present a significant amount
of distortion, hence model-based approach fails to separate
mixtures due to the non-optimality of the source model for
each speaker. As a solution, in this paper we demonstrate that
using split-VQ structure as our source model for each speaker
and employing it along with sinusoidal features including
amplitudes and frequencies for each speaker, improves the
quality of source model in terms of sparsity as well as more
acceptable objective/subjective measures.

The remainder of this paper is organized as follows. In
Section 2, we review the Fixed Dimension Modified Sinusoidal
Model (FDMSM) recently presented in [8] in order to reach at
useful sparse sinusoidal representation for audio signal. Next,
in Section 3, the idea of statistical source model with proposed
split-VQ structure is introduced. We also derive a new distance
measure which is found appropriate to split-VQ structure on
sinusoidal parameters obtained from FDMSM. Experimental
results are reported in Section 4. Section 5 concludes the paper.

II. SINUSOIDAL PARAMETERS AS FEATURE VECTORS

In this section, we review appropriate features for split-VQ
to be introduced in Section 3.

A. Brief review on FDMSM model

Audio signals generally contain either purely periodic (har-
monic) parts or non-periodic information which are related to
the tonal regions in music signal or the impulsive events or
”noise-like” processes occurring in unvoiced regions during
in a speech signal, respectively [1]. As a result, a time
window segment of the underlying observed audio signal can
be accurately modeled as a weighted sum of L sinusoids,

x(n) =
L∑

l=1

al cos(2πfln + φl) + ε(n) (1)

where n = 1, . . . , Ns is the sample index, Ns frame length,
the triple parameters including θl = (al, fl, φl), denote the
amplitude, frequency, and phase of the l-th sinusoid, respec-
tively. L is the number of sinusoidal components in the signal,
and ε(n) is the observation noise modeled as a zero-mean,
additive Gaussian noise sequence. In general, it is of interest
to estimate the corresponding sinusoids parameters including
frequencies fl, amplitudes al, phases φl and of course the
number of sinusoids, L. The number of sinusoids is of great
importance to establish a tradeoff between accuracy versus
efficiency. In another phrase, the model should not only hold
the sparsity of features but also preserve signal quality as close
as possible to the original input signal level. To do so, we
recently proposed the Fixed Dimension Modified Sinusoidal
Model (FDMSM) in [8]. We demonstrated that using only
33 < L < 40 sinusoids are enough to perfectly reconstruct
speech signals in that it results in insignificant difference
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Fig. 1. FDMSM block diagram.

compared to the original signal in perception as indicated by
listeners. In addition, presenting a model order based approach
in [9], it was also shown both theoretically and experimentally
that the best choice for L is L ≈ 33 and L ≈ 20 in the case
of speech and music, respectively.

In this work, we employ sinusoidal parameters including
amplitudes and their related frequencies in some Mel-bands
obtained by FDMSM [8] as split-VQ features discussed in this
paper. Using the fixed dimension features is in agreement with
the fact that for a trained VQ using the k-means algorithm all
elements in the vector are quantized jointly, and the dimension
must be fixed and known a priori as in [12]. Fig.1 illustrates
FDMSM model. In the following, we briefly explain how
FDMSM results in most efficient peak candidates preserving
the signal quality as close as possible to the original level.

Assume that S(k) be the spectrum of current speech frame.
For peak picking process it is common to have, 8 < L < 80 for
fs = 8kHz, however, for practical consideration, the choice
of the number of sinusoids, is a tradeoff since larger value of L
implies more computations. According to our previous results
obtained in [8],[9], in this work we set L=33. On the other
hand, window size and frame shift can also play a key role
and affect the overall quantization performance. It has been
demonstrated that the size of the window is critical since the
peaks resolvability depends on the analysis window length,
Na − 1 [10]. However, the window must be long enough for
individual harmonics to be resolvable. Hence, it is common
to assume the max pitch period to be 16ms, and the analysis
window, as a result is chosen 40(msec) in agreement with
2.5 times the averaged pitch period [10]. The time increment
should also be small compared to the window size [11]. As a
result, we opt for 8 msec hop size.

A parabolic interpolation is also used to arrive at a more
accurate estimate of amplitude and frequency parameters.
Furthermore, assuming sampling frequency fs = 8kHz, the
frequency components within fi < 62.5Hz and fi > 3840Hz
are removed from the STFT spectrum amplitude prior to
peak picking due to low (50 or 60Hz) and high frequency
sensitivity harmful effects. The number of peaks obtained
so far may differ from one segment to another. Hence, we
also aim to fix the number of sinusoidal parameters while
preserving the synthesized signal quality as close as possible
to the original signal in terms of perception. This results
in significant reduction in complexity. Moreover, handling or
saving features with fixed dimension is of much more interest.
Our proposed approach for fixing the number of sinusoids is
described as follows. The frequency range of [0, 4kHz] is
converted into Mel-scale for perceptual purposes. A center
frequency in addition to the related bandwidth is calculated
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Fig. 2. STFT, raw peak picking and the FDMSM approach in Log-scale for
(a) voiced and (b) unvoiced speech frame.

for each frequency range in that the number of sinusoids, M
can be selected by the user with the following relationship,

M ′ = dΩ(ωfinish)− Ω(ωstart)
step

e (2)

where M ′ is the number of Mel-bands, Ω(ωfinish), Ω(ωstart)
are Mel-scaled start and finish frequencies and step is the
frequency interval, respectively. Note that user can arbitrarily
change step in order to reach at different number of bands
within a given frequency range. We opt for ∆f = 62.5Hz
with fstart = 62.5Hz and ffinish = 3840Hz which results
in L = 33 sinusoids. Next, we search in each band for
peak candidates, and decide whether to pick or discard. Fig.2
compares the common STFT amplitude with raw peak picking,
and the result obtained by using the FDMSM model discussed
here. The x abscissa is set in the range 0 to 1.4kHz for voiced
and 0.8 to 3.5kHz for un-voiced for improved visualization.
As it is seen, considering the perceptual concepts related to
Mel-scale along with the fixing process for the number of
sinusoids discussed earlier, can result in choosing the most
effective peaks sited in different bands and ignoring the low-
level spectral portions that may be due to either noise or side-
lobe analysis window effects. The number of sinusoids in each
frame as a result is set fixed resulting in more compactness
and lower feature dimension.
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B. Synthesis at output stage

Once the quantizer finds the indices for the input test signal,
the codebook vectors can be used to synthesis the output
signal. The FDMSM output will be: [ai, fi, φi], i = 1, . . . , M ,
which can be used to reconstruct the kth synthetic contribution
sequence as follows,

x̂(n) =
M∑

j=1

ak
j cos(2πfkj n + φk

j ) (3)

where ∧ denotes estimated sinusoid parameters obtained by
FDMSM. Finally x̂(n), is overlapped and windowed by a
hanning window. This accomplishes the synthesis process at
split-VQ output used to produce separated signal. Note that
by picking sinusoidal peaks within the subbands in (2), it
will be enlightened in simulation results that employing such
sinusoidal parameters along with the split-VQ structure will
successfully improve the overall performance of source model.

III. SPEAKER MODELING BY SPLIT VQ

A. Overall split structure

Having N training vectors of fixed dimension D, our object
is to find M ¿ N representative vectors. It is assumed that
the number of training vectors, N are sufficiently larger than
the codebook size, M. Eventually, L ≈ k × M and k > 10
and here we consider k = 30 to establish a trade off between
computational complexity and accuracy. These representative
vectors also known as codevectors, are selected by minimizing
a cost function such as the Euclidian distance [7].

In many cases, vector quantisers need to operate at higher
bitrate and vectors of larger dimension, which both impact on
the overall computational complexity and memory requirement
in an exponential fashion. therefore, structurally VQs’, such as
split need to be employed [4]. Split-VQs were first applied
to norrowband LPC parameter quantization in [3]. In the
following, we present a new distance measure to be employed
on the FDMSM amplitude vectors of the underlying speaker
signals in the split-VQ structure.

As our aim in this work is to evaluate the performance of the
proposed split-VQ on SSCS scenario, the overall segregation
process is explained in what follows. For more info see [14].
Let Ai(k) and Bj(k) denote the arbitrary amplitude prototypes
(codewords) of codebook related to first and second speaker,
respectively. As our primary stage, a search is done through the
codevectors Ai(k) and Bj(k) to find the optimal codevectors
Aopt(k) and Bopt(k), that when mixed satisfy a minimum
distortion criterion to find which indices i.e. i,j result in closest
estimation of mix in terms of minimal spectral distortion. Note
that in this work we assume that the estimator is ideal and
we only report the quantization performance of the proposed
split-VQ in terms of Segmental Signal to Noise Ratio (SSNR)
and Segmental Signal to Distortion Ratio (SSDR) measures.
Hence, the represented results can be interpreted as separation
upper bound performance (Ideal VQ) as indicated in [2].

B. Deriving new Distance Measure

Several distance measures have been proposed for various
speech applications including the so called Euclidean distance
[7], cepstral and line spectral frequency (LSF) distance in
speech coding proposed by Paliwal in [4]. However, up to now
no distance measure has been employed to model-based SCSS
to achieve at a better quantization of STFT feature vectors. As
a result, in this work a new distance measure is presented based
on some perceptual cues which is used in our proposed split-
VQ. In the following we investigate the procedure to reach at
a new distance measure for sinusoidal parameters in split-VQ.

Before any clustering we need to perform some pre-
processing as: (1) Normalize the amplitude code-vectors to
their maximum value. This will scale the parameter range
to lie between [0,1]. In many clustering works, it has been
demonstrated that employing features in such a region can
improve the classification accuracy. (2) Take the logarithm for
the resulting normalized amplitude vectors obtained from the
previous stage. This will result in a reduction in code-vectors
dynamic range. Note that due to the problems of logarithm
scale for parameters with negligible values, a multiplication by
a factor called α is used. In addition the multiplicand will be
added with unity. This multiplication and addition will result
in a scale transformation. For instance, using α = 1000 results
in a change in scale of the input code-vectors from [0,1] to
[0,30] which is more acceptable while calculating the distance
between two amplitude vectors. The pre-processes employed
here can be summarized as follows,

Y (k) =
|Y (k)|

max(|Y (k)|) (4)

Ỹ (k) = log (1 + αYn(k)) (5)

where k = 1, . . . , NFFT is the frequency bin and 100 < α <
1000 to ensure the log-amplitude range between (0,30). In
addition, This pre-process results in neglecting non-significant
peaks often occurring in a DFT-amplitude of a certain speech
signal. It also ignores the low-level spectral portions that may
be a result of noise or side-lobe effects. The normalization to
max amplitude given in (5) results in a better performance in
VQ process since no more bits are needed to model the vectors
gain. To elaborate this, assume that we were to perform a VQ
on raw spectrum amplitudes as in [2], then we had,

|Y (k)| = max(|Y (k)|)Yn(k) (6)

log |Y (k)| = log |Yn(k)|+ log v (7)

where Yn(k) is assumed to be the normalized version of the
DFT-amplitude vector, and v is its gain. As can be seen an
extra term now exists which constrains VQ to use more bits
in order to model this dynamic range. The modified spectrum
amplitude vector demonstrated in (4),(5) also results in choos-
ing the most effective peaks sited in different frequency bands.

The tree structure for split-VQ is depicted in Fig.3. As
our 1st stage in the proposed split-VQ, a VQ is performed
on all amplitude parameters obtained by FDMSM explained
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earlier. We employed different cluster sizes including Ma =
1024, 2048, . . . . Assume that TV consists of amplitude and
frequency parameters obtained by FDMSM. As a result, each
training vector consists of two different components, namely
TV a(k) and TV f (k). The distance between the original
training vector and approximated vector (codevector) for am-
plitudes, distw(TVa, ĈW

a
) is defined by incorporating the

Euclidean distance as,

d(TVa, ĈW
a
) =

√√√√
Lmel∑

k=1

(TV a(k)− ˆCW
a
(k))2 (8)

where TVa denotes the amplitude part of the training vector.
The number of sinusoids are selected as Lmel = 33 according
to results obtained in [8],[9]. After establishing Ma amplitude
reference vectors, we are to obtain the complement part of
our split-VQ, i.e. appropriate frequency parameters related to
each amplitude codewords. These frequency codewords should
be selected such that the resulting joint codeword including
amplitude and related frequency parameters represent source
model as close as possible. To do so, we deemonstrate a VQ
on each amplitude codeword obtained in previous stage. As
depicted in Fig.3, a VQ with Mf = 1, 2 or 4 is performed. The
distance between the original training vector and approximated
vector (codevector), distw(TVf , ĈW

f
) is,

distw(TVf , ĈW
f
) =

√√√√
Lmel∑

k=1

w(k)(TV f (k)− ˆCW
f
(k))2

(9)
where TVf denotes the frequency part and w is,

w =
TVa

i∑Lmel

k=1 TV a
i (k)

(10)

dynamic weights. The weight in (10) is selected to finely
quantize frequencies located in the vicinity of a spectral peak,
resulting in less spectral distortion as stated in [4]. This com-
pletes the overall structure of split-VQ. Such distance measure
is close to the proposed method which possesses spectral
error localization properties. Similar to split-VQ used in [4],
employing such structure and using some weighted distance
measure, emphasizes specific sinusoidal peaks located near the
formant peaks. This directly can lead to nearly transparent
performance likewise Switch Split-VQ(SSVQ) [4] i.e. lower
spectral distortions and percentages of outlier frames. The tree
structured nature of split-VQ also provides for lower search
complexity required in model-based scenarios.

IV. SIMULATION RESULTS
In this section the performance of our proposed split-VQ

source model approach is evaluated. To do so, we conduct ex-
periments to demonstrate the results of employing the split-VQ
proposed in section 3 as a source model in order to evaluate
the results for SCSS upper-bound Performance. Note that the
simulation results presented here can also be considered as the
upper bound for single-channel VQ-based separation scenario.
The resulting codebooks indices are then used to produce the

Fig. 3. Split tree structure used in the proposed split-VQ.

separated signals like Ideal-separation (Ideal VQ) reported in
[2]. However, in this work, we only present the upper bound
performance of SCSS scenario to determine how successfully
can the proposed split-VQ model the speakers compared with
conventional VQ on STFT.

To achieve reliable results we need a comprehensive
database. Recently, Cooke et al. [13] have provided a new
database for the performance evaluation of speech separation
and enhancement systems. We use this database to conduct
the experiments. The database consists of speech files of 34
speakers, each containing 500 utterances. The experiments are
only performed for speaker dependent case. The sampling rate
is decreased to 8 kHz from the original 25 kHz. Throughout
all experiments, a Hamming window is used with a duration of
32 ms. It has been shown that too many outliers in the speech
utterance having large SDs’ can cause audible distortion even
though the average SD is 1dB. Therefore, the more recent
studies [3],[4] have tried to reduce the amount of outlier
frames, in addition to the average SD. Basically, the outlier
frames are divided into two groups including the frames with
2dB < SD < 4dB and with SD > 4dB [4]. According to
[4] the reasonable accuracy for transparent coding is attainable
whenever the average SD is about 1 dB i.e. the coded speech is
indistinguishable from original speech through listening tests.
The conditions are: (1) The average SD is approximately 1
dB; (2) There is no outlier frame having more than 4 dB of
SD; (3) Less than 2% of outlier frames are within 2-4 dB.

Table.1 summarizes the SSDR and SSNR results for differ-
ent frame shifts. As can be seen from Table.1, the minimum
outliers with distortion higher than 4 dB occurs for frame shift
of 10 ms. The minimum average distortion among different
frame shifts is also related to 10 ms frame shift. It also results
in higher performance in terms of SNR measures (SSNR and
SSDR). Table.2 illustrates the result of using different α in (5).
It is observed that α = 1000 results in the best performance
at point of both minimum outliers and average distortion. In
addition, comparing split-VQ with conventional VQ on STFT
in Table. 2, we observe that the former method results in at
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TABLE I
SPECTRAL DISTORTION (SD) VS. FRAME SHIFT.

shift (ms) SSDR SSNR Avg 2− 4dB > 4 SD < 2
16 11.81 8.43 1.02 10.8 2.5 86.7
10 19.81 14.79 0.68 5.4 0.6 94.1
8 14.25 10.03 0.93 9.4 1.8 88.8

TABLE II
SPECTRAL DISTORTION (SD) VS. DIFFERENT FEATURE TYPES.

Feature type Avg 2 < SD < 4dB SD > 4 SD < 2
a = 1000 0.4 12.16 0.55 87.29

a = 1 1 14.81 1.17 84.02
a = 0 1.1 15.75 1.52 82.73
STFT 1.67 19.91 9.64 70.45

least 1.2 dB lower average SD. In addition, the percentage
of outliers in STFT-based method is approximately 10 times
greater than split-VQ which is unacceptable.

After obtaining amplitude code-vectors, we incorporate
split-VQ on training vectors to extract candidate frequencies
for some amplitude code-vector. We observed that frequency
candidates are highly similar to each other in each mel-scale
frequency bands as given in (2). Fig.4 shows the frequency
trajectories obtained for candidate frequency code-vectors
corresponding to each amplitude code-vector. In this figure,
y-axis denotes Lmel = 33 frequency bands. However, due
to assigning higher bandwidths to higher frequencies, the
similarity is lower in contrast to lower frequencies. Fig.5
shows the histogram of distortion vs. SD in dB. We observe
that the distortion is nearly exponentially distributed (sparse).
In addition, as our subjective measures we conducted a Mean
opinion Score (MOS) informal listening test to measure the
perceived quality of the reconstructed signals. Ten people
were asked to give score between 0-5 to the reconstructed
utterances (5 represents original utterances score). Averaging
the listeners’ scores resulted in 3.4 out of 5.

V. CONCLUSION

We proposed split-VQ on sinusoidal parameters as a high
quality quantizer compared with conventional VQ commonly
performed on STFT feature vectors used in model-based
applications including speech separation and enhancement. A
new distance measure was also derived found suitable for
quantization of sinusoidal parameters in the proposed split-
VQ. According to simulation results, it was demonstrated that
the proposed split-VQ can significantly result in a better source
model in terms of both objective and subjective measures.
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