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ABSTRACT 

Estimating a visual evoked potential (VEP) from the human 

brain is challenging since its signal-to-noise ratio (SNR) is 

generally very low. An eigendecomposition-based  

subspace approach originally proposed for enhancing 

speech corrupted by colored noise, has been investigated 

and tested in the single trial extraction of VEPs. This 

scheme arbitrarily labeled as an eigen-decomposition (ED) 

method has been compared with a third-order correlation 

(TOC) method, using both realistic simulation and real 

human data. The results produced by the ED algorithm 

show much cleaner waveforms, and higher degree of  

consistency in detecting the P100, P200, and P300 peaks. 
 
Keywords: Eigenvalue decomposition, subspace methods, 

visual evoked potential latencies.  

1. GENERAL INFORMATION 

Visual evoked potential (VEP) latencies such as the P100’s 

are used by clinicians to check the integrity of the visual 

pathways from the retina to the occipital cortex part of the 

brain [1]. The VEP is not immediately distinguishable from 

the brain recording because the VEP is buried deep inside the 

ongoing electroencephalogram (EEG) noise, with a typical 

signal-to-noise ratio (SNR) of -5 to -10 dB [2]. The EEG is 

highly colored with unknown covariance matrix.  

 

Conventionally, ensemble averaging is used to extract the 

VEPs. For this, hundreds of trials need to be acquired and 

averaged out to really produce clean VEP estimates; this  

requires very long recording time causing discomfort and 

fatigue to the subject under study. Among the most recent 

“single-trial” approaches to detect VEPs is a third-order  

correlation (TOC) technique proposed by Gharieb and 

Cichocki [3]. This technique performs well in handling white 

and colored noise whose spectrum does not overlap with that 

of the desired signal. However, the efficiency of the TOC 

method is compromised when spectrum overlapping occurs.       

 

The focus of this study is to correctly estimate VEP latencies, 

instead of VEP amplitudes. In general, an approach based on 

a signal subspace principle performs well in estimating the 

desired peak positions (i.e., latencies) of a given waveform. 

The VEP extraction method presented here is inspired by 

work from a speech enhancement area, originally proposed 

by Ephraim and Van Trees [4]; the original work dealt  

primarily with white noise. Later, Rezayee and Gazor [5] 

extended the time-domain-constrained white noise method to 

deal with colored noise by approximating the covariance 

matrix of the Karhunen-Loéve transform (KLT) noise vectors 

with a diagonal matrix.  

 

In this paper, we apply the mathematical model suggested by 

[4] and introduce the estimator enhanced by [5] to extract the 

VEP latencies from the colored EEG noise, without using a 

pre-whitening process. The incorporation of universal  

optimization schemes in [4] and [5] makes them suitable for 

our single-trial estimation of VEPs.   

2. MODEL DEVELOPMENT 

2.1 VEP Model 
 
In developing a mathematical expression for extracting a 

VEP signal, the following model is defined. 
 

 y = x + n                      (1) 
  
where, y is the M-dimensional vector of the corrupted 

(noisy) VEP signal; x is the M-dimensional vector of the 

original (clean) VEP signal; n is the M-dimensional vector 

of the additive EEG noise which is assumed to be  

uncorrelated with x. Next, H is defined as the M x M-

dimensional matrix of the VEP time-domain constrained 

linear estimator.  

 

Further, x̂  is defined as the M-dimensional vector of the 

estimated VEP signal. The estimated VEP signal x̂  is  

related to H and y in the following way: 
 

 x̂   = H.y                     (2) 
 
The estimated VEP signal x̂  will never be exactly equal to 

the original VEP signal x; errors will inevitably be  

produced in the estimated VEP signal. In the case of VEP 

estimation, the system equation in (2) is to  

minimize a specified error criterion, which is the ultimate 

measure of the VEP estimation performance criterion. As 

such, the error signal ε obtained by [4] is given by: 
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The εx represents the VEP distortion and εn represents the 

residual noise. The energies of the signal distortion 
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and the energies of the residual noise 
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lead to the total residual energies 
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The EEG noise covariance matrix Rn can be obtained from 

the pre-stimulation EEG samples, during which the VEP 

signals are absent. Our ultimate goal is to minimize both the 

unwanted energies so that a minimal error signal is obtained. 

The challenge is when signal distortion is at its lowest, noise 

will be at its highest; on the other hand, if noise is fully 

minimized, distortion will be at its greatest. Therefore, a 

good balance needs to be exercised so that the noise  

residues can be reasonably minimized without introducing 

significant distortion to the processed signal.  

 

2.2 Estimator Optimization 
 

Now, the aim is to design a linear estimator H that  

minimizes the VEP signal distortion over all linear filters. 

This can be achieved by maintaining the residual noise 

within a permissible level. Mathematically, the optimum 

linear estimator Hopt with time-domain constraints on the 

residual noise is formulated by [4] as 
 

222 :subject to    

            

min Mσnxopt ≤= εε

H

H                (7) 

 
where M is the dimension of the noisy vector space and σ2

 

is a positive constant noise threshold level. The σ2
 in (7) 

dictates the amount of the residual noise allowed to remain 

in the linear estimator. Next, the Lagrangian function in 

association with the “Kuhn-Tucker necessary conditions for 

constrained minimization” [4] are applied to (7) to obtain 

Hopt. The formed Lagrangian function can be expressed as 
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where µ is the Lagrange multiplier. It follows that the filter 

matrix H is a stationary feasible point if it satisfies the  

following gradient equation ∇HL(H, µ) = 0: 
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 (9)    

Subsequently, the gradient equation in (9) can be solved as 
 

H  = Rx(Rx + µRn)
-1   

                       (10) 
 
The filter matrix H stated in (10) functions as a fixed filter, 

which performs well to estimate the VEP at a relatively 

high SNR. As the SNR degrades, it is desirable if H can be 

adjusted accordingly to minimize the noise residues while 

keeping the signal distortion at an acceptable level. The 

eigendecomposition of Rx and Rn components stated in (10) 

makes H adjustable; the noisy VEP space can be  

decomposed separately into signal and noise only subspace. 

If the dimension of the Rx eigenvalues is not lowered, the 

filter H functions exactly as that denoted in (10) − keeping 

signal distortion to its very minimum and noise energy to 

its maximum.  A suitable dimension of the Rx eigenvalues 

will eliminate the noise only subspace, enabling the VEP to 

be estimated from the remaining signal subspace. Of 

course, the wanted signal may not be completely free from 

noise since the “signal” subspace is actually a “signal plus 

noise” subspace. Nevertheless, the wanted signal is now 

clearly visible as the SNR value gets improved due to the 

subspace filtering technique.   

 

2.3 Generic Subspace Approach 
 
Now, eigenvalue or singular value decomposition can be 

performed on Rx and Rn. By treating Rx = U∆∆∆∆xU
T
, we rewrite 

(10) as 
 

Hopt = U∆∆∆∆x(∆∆∆∆x + µU
T
RnU)

-1
U

T
                (11) 

   
where, Hopt denotes an optimal estimator; U is the unitary 

eigenvector matrix produced from a symmetric basis matrix 

ΣΣΣΣ which is to be computed from the proper combinations of 

Rx and Rn terms; ∆∆∆∆x is the diagonal eigenvalue matrix of Rx.  

 

It should be noted that the Lagrange multiplier µ has to be 

set to a proper value. The higher value of µ  eliminates more 

noise residues at the expense of higher distortion in the  

recovered VEP.   

 

Theoretically, the linear estimator in (11) functions  

optimally if the unitary eigenvector matrix U derived from ΣΣΣΣ 

is able to simultaneously diagonalize both Rx and Rn. The 

full diagonalization of their eigenvalues can be obtained if 

and only if Rx and Rn multiplication is commutative  

(i.e., Rx Rn = Rn Rx). In reality, complete diagonalization is 

not possible since their multiplication is non-commutative. 

  

2.4 Eigenvalue Decomposition (ED) Method 
 
By assuming that the VEP and EEG noise are independent, 

we get the following 
 

Ry = Rx + Rn
  
                                  (12) 

 
Next, we assume that ΣΣΣΣ = Ry produces an eigenvector matrix 

that shall diagonalize both Rx and Rn. This choice of ΣΣΣΣ  is the 

same as that used by [5]. The eigenvalue matrices of the 

desired VEP and the unwanted noise are then calculated as 

follows: 
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Applying (13) and (14) to (11), we approximate our  

estimator as 
 

    HED = V ΛΛΛΛx (ΛΛΛΛx + µ ΛΛΛΛn)
-1

 V
T
                      (15) 

 
Our estimated VEP is then calculated as 
 

 x̂
ED

 = HED . y                       (16) 

 

2.5 Algorithm Implementation 
 
The proposed approach can be formulated in the following 

six steps. For each VEP trial: 

 

Step 1: Compute the covariance matrix of the noisy signal Ry, 

and the noise covariance matrix Rn. 

 

Step 2:  Perform the eigendecomposition of ΣΣΣΣ = Ry, extract 

the resulting eigenvector matrix V, and compute the signal 

and EEG noise eigenvalue matrices ΛΛΛΛx and ΛΛΛΛn, respectively. 

 

Step 3: Assuming that λk series represented by λ1 > λ2 > λ3 … 

λM are the diagonal elements of ΛΛΛΛx sequenced in descending 

order, approximate the dimension, L, of the VEP signal sub-

space using the following:  

L = arg{
Mk ≤≤   1

max
 λk > 0}      (17) 

Step 4: The gain vector of the estimator is computed as  

follows: 

Li
inλµixλ

ixλ
iq ≤≤

+
= 1      

)( )(

)(
)(             (18) 

It is generally difficult to estimate the exact value for the 

Lagrange multiplier µ. However, we set it to 2 to  

compromise between the amount of signal distortion and 

noise residues present in the estimator. The gain matrix G  is  

obtained by diagonalizing the gain vector, q. 

 

G = 





00

0}diag{q
 = 





00

0Q
            (19) 

Step 5: The sub-optimal linear estimator HED is determined 

as follows: 

 HED = V . G . V
T
                        (20) 

 

Step 6: Estimate the enhanced VEP signal by: 

 

  x̂
ED 

= HED . y                     (21) 

3. PERFORMANCE EVALUATION 

The ED and TOC methods were tested and assessed using 

artificial and real human data. 

 

3.1 Assessment of the Algorithm using Artificial Data 
 
The clean artificial VEP x was generated by superimposing 

several Gaussian functions; the amplitudes, variance and 

mean of these functions were experimentally tweaked to 

generate precise peak latencies at 100 ms, 200 ms, and  

300 ms, mimicking the real P100 (or P1), P200 (or P2), and 

P300 (or P3), respectively. 
 

 

The pre-stimulation EEG colored noise n_pre is generated 

using autoregressive (AR) model [6] given by the following 

equation. 
  
             v(n) = 1.5084v(n – 1) – 0.1587v(n - 2) – 

 0.3109v(n – 3) – 0.0510v(n - 4) + u(n)      (22) 
       
The artificial post-stimulation EEG noise n was generated by 

manipulating the variance of n_pre to introduce a 10 % error 

in the artificial pre-stimulation EEG.. The artificially-

corrupted VEP signal y was then produced by adding  

together the artificial VEP x and the post-stimulation EEG n.  

 

To test the robustness of both algorithms, the ratio of the 

signal (i.e., artificial VEP) over the colored noise (i.e., EEG) 

was varied from approximately +0 dB to -10 dB. The  

corrupted VEP signal with a specific value of SNR was  

applied to the inputs of the ED and TOC filters to extract the 

P100, P200 and P300 components. One hundred different 

runs were performed for each level of SNR. For successful 

runs, the values of the extracted peaks were precisely  

recorded from the filter outputs. On the other hand, zeros 

will be assigned to all VEP peaks in cases where any filters 

failed to produce the intended waveforms. Later, the P100’s, 

P200’s and P300’s (from the combinations of successful and 

unsuccessful trials) of the one hundred trials were  

individually averaged; these averaged values were thereafter  

compared with the reference values at 100 ms, 200 ms and 

300 ms, respectively.   

 

Table 1 below tabulates the success rates for both estimators 

over SNR = 0 dB to -10 dB.  

 
Table 1 - The success rates of the ED and TOC filters at  

SNR = 0 dB to -10 dB.  

 

VEP Extraction Success Rate [%] 

S
N

R
 

[d
B

] 

ED TOC 

0 96 65 

-2 92 60 

-4 92 58 

-6 86 55 

-8 78 47 

-10 86 30 
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From Table 1, it can be stated that the ED and TOC filters 

produce success rates at an average of 88 % and 52.5 %, 

respectively, over the whole SNR range. The efficiency of 

the ED filter drops slightly as the SNR gets lower. On the 

other hand, the TOC filter deteriorates drastically as the 

SNR went below -6 dB.  

 

For some graphical illustrations, samples of various wave-

forms, with successful extraction of components at -4 dB 

using both the ED and TOC methods, are shown in Figure 1 

below.  
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Figure 1 - Samples of various waveforms. (a) The artificial 

VEP x; (b) The artificial pre-stimulation EEG noise n_pre;  

(c) The artificial post-stimulation EEG noise n; (d) The mixture 

of the artificial VEP and post-stimulation EEG y = x + n, at  

SNR = -4 dB; The successfully estimated VEP x̂ ED, using  

(e) the ED method, and (f) the TOC approach. 

 

Finally, in order to clearly highlight the filters’ performance, 

another performance metric, measured in terms of  

percentage errors of VEP peaks versus SNR levels, is  

tabulated in Table 2 below. 
 
Table 2 - Estimation of the P components using the ED and 

TOC methods: Percentage errors (PEs) of the averaged P1’s 

(i.e., P100s), P2’s (i.e., P200’s) and P3’s (i.e., P300’s) at  

various SNRs.  

 

PE of Aver-

aged  

P1’s [%] 

PE of 

Averaged  

P2’s [%] 

PE of 

Averaged 

P3’s [%] 

S
N

R
 [

d
B

] 

E
D

 

T
O

C
 

E
D

 

T
O

C
 

E
D

 

T
O

C
 

0 10.3 13.2 1.8 20.6 0.6 22.6 

-2 9.9 25.6 2.5 31.7 1.0 33.2 

-4 6.6 23.2 2.4 32.4 4.5 34.5 

-6 7.2 38.5 2.7 45.7 4.8 47.5 

-8 0.5 45.8 7.7 52.5 9.1 54.4 

-10 11.0 66.7 1.1 71.4 6.3 72.9 

 

From Table 2, it can be deduced that ED introduces a  

percentage error as high as 11 % (at SNR = -10 dB) for P1 

components, 7.7 % (at SNR = -8 dB) for P2 components, 

and 9.1 % (at SNR = -8 dB) for P3 components.  

 

In addition, the TOC estimator generates 66.7 % percentage 

error (at SNR = -10 dB) for P1 components, 71.4 % (at  

SNR = -10 dB) for P2 components, and 72.9 % (at  

SNR = -10 dB) for P3 components.  

 

3.2 Assessment of the Algorithm using Human Data 
 
Experiments were carried out on normal subjects who were 

asked to watch a checkerboard pattern comprising two  

different visual stimuli (75% non-target and 25% target)  

presented in a pseudo-random order (oddball paradigm). For 

each subject, sixteen different trials were measured and scalp 

recordings were made according to the International 10/20 

System in frontal (F1, F2), central (C3, Cz, C4), parietal (P3, 

P4) and occipital (O1, O2) electrodes referenced to link  

earlobes. In this paper, we will show results for three  

artefact-free trials of a subject taken from the left occipital 

(i.e., O1) electrode only. Each trial containing 512 data points 

(256 pre- and 256 post-stimulation)  was pre-filtered in the 

range 0.1 to 70 Hz, and was sampled at 250 Hz. More  

detailed information pertaining to the experimental setup can 

be found from [7, 8].  

  

Since the experiments dealt only with sixteen trials per  

subject, the estimated VEP latencies by means of averaging 

were not readily available; the ensemble averaging technique 

would normally require a significant number of samples 

(e.g., 100 or 200) to be taken. Therefore, to make analysis 

possible, we assume that the subject under study managed to 

produce valid P1, P2 and P3 components exactly at 100 ms, 

200 ms and 300 ms. This imposes the most stringent  

conditions on the filter performance, yet it provides the most 

straightforward and consistent basis for our discussions. 

 

Table 3 below summarizes the measured values of P  

components produced by the ED and TOC filters for the 

subject’s three trials pattern VEP test.  
 

Table 3 - Measured P1, P2 and P3 latencies (in ms) of the  

subject’s three trials Pattern VEP test. The values in the  

parentheses are the corresponding percentage errors (PEs) 

when the recorded P1, P2 and P3 values are compared with the 

reference values at 100 ms, 200 ms and 300 ms, respectively. 

 
Note: NA (i.e., not available) is used whenever a peak of  

interest is missing or corrupted with noise.   
 

ED TOC T
R

IA
L

 #
 

P1 

[ms] 
 

(PE 

[%]) 

P2 

[ms] 
 

(PE 

[%]) 

P3 

[ms] 
 

(PE 

[%]) 

P1 

[ms] 
 

(PE 

[%]) 

P2 

[ms] 
 

(PE 

[%]) 

P3 

[ms] 
 

(PE 

[%]) 

1 
93 
(7) 

216 
(8) 

338 

(13) 

81 
(19) 

173 
(14) 

271 
(9.7) 

2 
90 

(10) 

213 

(6.5) 

331 
(10) 

NA 
(100) 

213 
(6.5) 

NA 
(100) 

3 
101 
(1) 

201 
(0.5) 

289 

(3.7) 

87 
(13) 

183 

(8.5) 

253 

(16) 
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If the allowable maximum percentage error (PE) for each P 

component is set to 15 % (in Table 3 the peaks with PEs of 

15 % or less are boldfaced), the ED filter successfully  

extracted all the required peaks in trials #1, #2 and #3, 

whereas the TOC estimator managed to extract only the P2 

and P3 from trial #1, P2 from trial #2, and P1 and P2 from 

trial #3.  

 

We present here an illustration of the ED’s and TOC’s  

extracted Pattern VEPs in Figure 2.  
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Note: The point (•) marker is used to denote the peaks extracted 

by the ED filter. The plus sign (+) marker denotes the peaks  

extracted by the TOC filter. 

 
Figure 2 - Noisy Pattern VEPs (solid thin gray line) for  

(a) trial #1; (b) trial #2; (c) trial #3; and their corresponding  

estimates produced by the ED filter (dotted thick black line) 

and the TOC estimator (solid thick black line). 

 

From Figure 2, it can be stated that the ED filter produces 

very clean signals, whereas majority of the  TOC filter’s 

estimates still contain noise ripples. In trial # 2 for example, 

the TOC filter produced peaks at 19, 37, 70, 88, 99, 112, 

171, 213, 274, 292, 336, 354, 371, and 393 ms. The P2  

occurs clearly at 213 ms, but the P1 and P3 cannot be  

determined absolutely due to the presence of several peaks 

in the vicinity.  

 

In brief, the simulated and real data experiments proved the 

superiority of the subspace technique over the third order 

correlation method.     

4. CONCLUSIONS AND FUTURE WORK 

A subspace technique for enhancing VEP signals degraded 

by EEG noise is proposed and thoroughly tested. Two main 

experiments involving realistic simulation and real Pattern 

VEP data have been conducted on the ED and TOC filters. 

The results reflect the capability of the subspace technique to 

become an optimum scheme for extracting VEP embedded 

inside strong colored noise at an SNR value as low as -10 dB.  

 

Next, comprehensive tests involving larger patient data will 

be performed. Some modifications will also be made to the 

ED algorithm to make it more robust. Among the most  

critical criteria in implementing the ED algorithm is the  

suitable selection of a basis matrix, leading to the creation of 

a truly unitary common diagonalizing matrix and resulting in 

fully optimum VEP extraction. 

 

Presently, the technique is able to satisfactorily estimate the 

VEP latencies of the P100, P200 and P300. In the future, 

some mechanisms need to be devised to enable the algorithm 

to capture both amplitudes and latencies in correlation with 

the original waveform.  
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