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ABSTRACT
We investigate a family of stochastic exploration methods that has
been recently proposed to carry out estimation and prediction in
discrete-time random dynamical systems. The key of the novel ap-
proach is to identify a cost function whose minima provide valid es-
timates of the system state at successive time instants. This function
is recursively optimized using a sequential Monte Carlo minimiza-
tion (SMCM) procedure which is similar to standard particle filter-
ing algorithms but does not require a explicit probabilistic model to
be imposed on the system. In this paper, we analyze the asymptotic
convergence of SMCM methods and show that a properly designed
algorithm produces a sequence of system-state estimates with indi-
vidually minimal contributions to the cost function. We apply the
SMCM method to a target tracking problem in order to illustrate
how convergence is achieved in the way predicted by the theory.

1. INTRODUCTION

Let us consider the problem of tracking the unobserved state of
a discrete-time, random dynamical system. Assuming first-order
Markov dynamics, a state-space model of the system consists of the
pair of equations

xt = f (xt−1,ut) (state eq.) (1)
yt = g(xt ,mt) (observation eq.) (2)

where t ∈ N denotes discrete time, xt ∈ Rnx is the system state at
time t, yt ∈ Rny is the associated observation and ut ∈ Rnu and
mt ∈ Rnm are noise terms. Functions f : Rnx ×Rnu → Rnx and g :
Rnx ×Rnm → Rny describe the state dynamics and the measurement
of observations, respectively.

It is often of interest to approximate the filtering probability
density function (pdf), i.e., the pdf of xt given the sequence of ob-
servations y1:t ! {y1, ...,yt}. When both f and g are linear and the
noise terms are Gaussian, the Kalman filter [7] yields an exact so-
lution. When the system is nonlinear and/or non-Gaussian, particle
filters (PFs) [4, 14] provide a point-mass approximation that con-
verges to the filtering pdf under weak assumptions on model (1)-(2)
[12].

However, the practical accuracy of PFs is strongly dependent
on the validity of the model. Discrepancies between the assumed
model and the actual processes may lead to poor estimation perfor-
mance. For example, if function f does not sufficiently account for
the dynamical features of the state process, xt , a PF derived from
such model is not likely to consistently track the sequence of states
{xt}t∈N. E.g., in a target tracking problem we may choose a linear
motion model, but the target exhibit maneuvering dynamics [14].
Mismatches between the assumed noise pdf’s, either in the state or
the observation equations, and the actual statistics of the sequences
{xt}t∈N and {yt}t∈N may also lead to a performance degradation.
The latter situation is not unusual. In communication receivers, for
instance, observational noise is often assumed Gaussian, but impul-
sive processes appear in many environments [9].

In this paper, we investigate a family of stochastic exploration
methods that has been recently proposed for the on-line estimation
of the state sequence, xt , without explicit assumptions on the pdf’s

of the noise processes, ut and mt [11]. The key of the novel ap-
proach is to identify a cost function whose minima provide valid es-
timates of the system state at successive time instants. This function
is recursively optimized using a sequential Monte Carlo minimiza-
tion (SMCM) procedure which is similar to standard PFs, including
sampling, weighting and selection (resampling) steps [3]. We ana-
lyze the asymptotic convergence of SMCM methods and show that
a properly designed algorithm produces a sequence of system-state
estimates with individually minimal contributions to the cost func-
tion. Moreover, this result can be attained only with an approximate
knowledge of the system dynamics (i.e., function f does not have to
be known exactly). Finally, we apply the SMCM method to a target
tracking problem that yields a graphical depiction of how conver-
gence is achieved in the way predicted by the theory.

The remaining of the paper is organized as follows. In Section
2, we introduce a description of the SMCM which is both more
general and more concise than the original statement of the method
in [11]. Asymptotic convergence results are stated and discussed
in Section 3. Section 4 is devoted to simulations and, finally, we
briefly present some conclusions in Section 5.

2. SEQUENTIAL MONTE CARLO MINIMIZATION
Let us assume that the minimization of the cost function
C(x0:t ,y1:t) is a valid, although possibly suboptimal, criterion for
the estimation of x0:t . We further assume that C can be recursively
decomposed as

Ct−1 ! C(x0:t−1,y1:t−1) (t > 1), (3)
C(x0:t ,y1:t) ! h(c(xt ,yt),Ct−1), (4)

where C0 ≥ 0 is an arbitrary constant, c : Rnx ×Rny → [0,∞) is a
marginal cost function and h : [0,∞)× [0,∞) → [0,∞) incorporates
the marginal cost into the overall cost. A typical example is an
additive cost of the form

C(x0:t ,y1:t) =
t

∑
n=1

|yn− !(xn)| (5)

where ! is some nonlinearity related to the observation equation,
c(xt ,yt) = |yt− !(xt)| and h(a,b) = a+b.

A SMCM algorithm applies the algorithmic steps of a PF to
the minimization of C(x0:t ,y1:t). In order to describe the generic
methodology we need to introduce some notation. Specifically: let
Mt denote the number of samples (also called particles) drawn at
time t; letC(k)

t = h(c(x(k)
t ,yt),C

(k)
t−1) be shorthand for the cost of the

k-th particle; let X0 ⊂ Rnx denote a set with finite Lebesgue mea-
sure, termed the prior set; let σt denote a probability mass function
(pmf) with support in the set {1, ...,Mt−1}, referred to as the selec-
tion pmf; let s : [0,∞)→ [0,∞) be termed the cost-selection function;
and let ρ̃t(xt |xt−1) denote a Markov transition pdf. The recursive
SMCM algorithm, based on the technique in [11], can be outlined
as follows.
1. Initialization. DrawM0 random samples from the prior set X0.

The initial costs take a non-negative constant value,C(k)
0 =C0 ≥

0 for all k.
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2. Recursive step. Let Ωt = {x
(k)
t ,C(k)

t }Mt
k=1 be the collection of

particles at time t.
(a) Selection. Draw indices from {1, ...,Mt} according to σt+1,

i(k) ∼ σt+1(i), k = 1, ...,Mt+1, i ∈ {1, ...,Mt}. (6)

Set x̃(k)
t = x

(i(k))
t and C̃(k)

t = s(C(i(k))
t ) in order to build Ω̃t =

{x̃
(k)
t ,C̃(k)

t }Mt
k=1.

(b) Propagation. Draw new particles and compute new costs

x
(k)
t+1 ∼ ρ̃t+1(xt+1|x̃

(k)
t ), (7)

C(k)
t+1 = h(c(x(k)

t+1,yt+1),C̃
(k)
t ), (8)

in order to build Ωt+1 = {x
(k)
t+1,C

(k)
t+1}

Mt+1
k=1 .

Both the Bayesian bootstrap filter and the generic sequential
importance resampling algorithm can be derived from the SMCM
framework by adequately selecting functions σt , s, c, h and ρ̃t [10].
In general, however, the latter can be chosen quite freely in order to
obtain a broader range of algorithms.

Estimation using the particles in Ωt = {x
(k)
t ,C(k)

t }Mt
k=1 can be as

simple as choosing the sample with the lowest cost. Alternatively,
given a monotonically non-increasing function b : [0,∞) → [0,∞),
we can build an ad hoc discrete probability measure β (k)

t ∝ b(C(k)
t ),

k = 1, . . . ,Mt , and use it to obtain the averaged state-estimate

x̂
β
t =

M

∑
k=1

β (k)
t x

(k)
t . (9)

A typical choice of function b is b(z) =

1/
∣

∣

∣
z−mink{C

(k)
t }+1/M

∣

∣

∣

q
, with fixed q ≥ 1, in order to

emphasize low-cost particles [10].

3. CONVERGENCE OF THEMARGINAL COSTS

3.1 Preliminary definitions and results
The straightforward question regarding the convergence of the
SMCM methods as described in Section 2 is whether the algorithm
can produce a sequence of state estimates with a cost which is arbi-
trarily close to the minimum one. This type of convergence, how-
ever, is hard to analyze without further assumptions on the struc-
ture of function C(x0:t ,y1:t). Instead, we are going to consider
the simpler, but still meaningful, problem of the convergence of the
marginal costs given by function c(xt ,yt). In particular, given de-
terministic observations y1:T , where T < ∞ but arbitrarily large, let

xt,o ! arg min
x∈Rnx

c(x,yt), (10)

x̂t,o ! arg min
x∈{x

(k)
t }Mtk=1

c(x,yt) (11)

be a marginal-cost minimizer in the state-space (not necessar-
ily unique) and the marginal-cost minimizer in the discrete set
{x

(k)
t }Mt

k=1 generated by the SMCM algorithm at time t. We tackle
the question of whether x̂t,o can be made arbitrarily close to xt,o,
possibly with arbitrarily large numbers {Mt}Tt=0 and for sufficiently
large t (yet t ≤ T ). When the answer is positive, we say that the
SMCM algorithm attains marginal-cost convergence. For many
cost functions in practical systems the minimization of the sequence
of marginal costs will lead to an adequate steady-state performance
of the SMCM algorithm, although possibly after some transient pe-
riod for which accurate estimation may not be attained.

We need to establish some assumptions and specific notation to
address this problem. We start by assuming that the selection pmf,

σt , and the conditional propagation pdf, ρ̃t , can be joined into a
single propagation density. In particular, we define the joint pdf

ρt(xt ,k) ! ρ̃t(xt |x
(k)
t−1)σt(k), (12)

hence the selection and propagation steps can be jointly written
as

(

x
(i)
t ,k(i)

)

∼ ρt(xt ,k). The (auxiliary) particle index can be
summed out, to yield

x
(i)
t ∼ ρt(xt) !

Mt−1

∑
k=1

ρt(xt ,k). (13)

Note that the pdf’s ρt(xt ,k) and ρt(xt) are implicitly conditional on
the particle set {x(k)

t−1}
Mt−1
k=1 .

Since y1:T is deterministic, so they are the sequences of
marginal cost minimizers, {xt,o}Tt=1 (note that multiple sequences
of minimizers may exist). Let us also assume the availability of
functions at : Rnx → Rnx and a distance d(·, ·), properly defined in
Rnx , for which:

Assumption 1 There exists a finite constant A ∈ R such that, for
all t, At ! d

(

at(xt,o),xt+1,o
)

< A.

Assumption 2 For any x,x′ ∈ Rnx , if d(x,x′) < ∞ then
d (at(x),at(x′)) < ∞, ∀t.

Given Assumptions 1 and 2, the dynamics of the minimizers
can be related to the dynamics of sequences of sets with certain
properties. To be specific, let {Xt}t∈N∗ , where N∗ = N∪{0}, be a
sequence of sets in Rnx . We impose the following assumptions.

Assumption 3 For all t ∈ N∗, Xt = ∑nti=1 Oi,t , where nt < ∞ and
O1,t , . . . ,On,t are bounded open cells [2] in Rnx .

Assumption 4 Let

at (Xt) ! {x ∈ R
nx : x = a(y) for some y ∈ Xt} (14)

and letA ,B ⊂Rnx . We define the distance between the setsA and
B as d(A ,B)! infx∈A ,y∈B d(y,x), and the complement ofA as
A ! {y ∈ Rnx : y /∈ A }. Then, for all t ∈N, d

(

X t ,a(Xt−1)
)

> 0.

Let m(·) denote the Lebesgue measure. Assumption 3 con-
strains the class of sets that can appear in the sequence {Xt}t∈N∗ .
However, for any measurable set E ∈ Rnx , such that m(E ) < ∞,
and for any ε > 0, there exists a sequence of bounded open cells
{O}ni=1, with n < ∞, such that that the measure of the symmetric
difference between the set E and its approximation Xn =∪ni=1Oi is
less than ε [2], i.e., m(E-Xn) = m((E −Xn)∪ (Xn−E )) < ε .

It is of interest to upper bound the separation between a mini-
mizer xt+1,o and the set Xt+1 given the distance d(Xt ,xt,o). Let
us define

Dsupt+1 ! max
x,x′∈Rnx

d(at(x),at(x′)),

subject to d(x,x′) ≤ d(Xt ,xt,o), (15)

for t < T , and the associated bound for the distance increment

-sup
t+1 ! Dsupt+1 −d(Xt ,xt,o). (16)

Because of Assumption 2, if d(Xt ,xt,o) < ∞ then Dsupt+1 <∞. From
Assumption 4, we can also define the sequence of positive numbers

doutt+1 ! d(X t+1,at (Xt)) > 0, t ∈ N
∗ (17)

and, taking together (16), (17) and Assumption 1, we introduce the
sequence

Kt+1 ! doutt+1 −At −-sup
t+1, t < T. (18)

The following Proposition will be a key tool to prove the
marginal-cost convergence of SMCM methods.
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Proposition 1 If Kt ≥ 0 for all t ∈ {t1 + 1, . . . ,t2} and
d(Xt1 ,xt1,o) < ∞, then for all t ∈ {t1 +1, . . . ,t2},

d(Xt ,xt,o) ≤ max

{

0,d(Xt1 ,xt1,o)−
t

∑
n=t1+1

Kn

}

. (19)

See Appendix A for a proof. Intuitively, Proposition 1 states
that if the sequence Kt is non-negative for t1 < t ≤ t2, then the sets
Xt1<t≤t2 converge towards the minimizers xt,o. If t2 − t1 can be
made arbitrarily large and Kt = 0 only a finite number of times,
then d(Xt2 ,xt2,o) = 0.

3.2 Convergence
We will show that, for sufficiently large natural numbers {Mt}Tt=1, a
SMCM algorithm can be designed in such a way that the state-space
sample

xt,∗ ! arg min
x∈{x

(i)
t }Mti=1

d(x,xt,o). (20)

converges to xt,o, in probability, when t is sufficiently large. To ex-
press this result, we will use notation Prob{E} to denote the proba-
bility of a random event E.

Proposition 2 Consider a sequence of deterministic observations
yt1:t2 such that d(xt1,∗,xt1,o) <∞. For any fixed real numbers ε,δ >
0 there exist pdf’s {ρt}t1<t≤t2 and natural numbers {Mt,ε ,δ }t1<t≤t2
such that, for all {Mt >Mt,ε ,δ }t1<t≤t2 ,

Prob{d(xt,∗,xt,o) ≤ ε+max{0,d(xt1,∗,xt1,o)−Jt}} > 1−δ ,
(21)

with 0 < Jt < Jt+1, for all t ∈ {t1 +1, . . . ,t2}.

The proof, given in Appendix B, consists of two steps. First, it
is shown that the samples generated by a properly defined SMCM
algorithm are contained in a sequence of sets that comply with As-
sumptions 3 and 4. Then, Proposition 1 is applied to obtain the
desired result, with Jt =∑tn=t1+1Kn and Kn > 0 for n= t1 +1, ...,t2.
Intuitively, Proposition 2 says that a soundly designed SMCM al-
gorithm produces clouds of particles closer and closer (as time
evolves) to the marginal-cost minimizers. Two remarks are rele-
vant:
• If, for all t, |Jt+1 − Jt | ≥ εJ > 0, with εJ independent of t, and

we allow t2 to be arbitrarily large, then Proposition 2 implies
that xt,∗ → xt,o in probability.

• If the marginal cost c is uniformly continuous at the minimiz-
ing points xt,o, then the convergence of xt,∗ implies the conver-
gence of x̂t,o (i.e., the convergence of the minimum marginal-
cost estimates produced by the SMCM algorithm).

4. SIMULATION EXAMPLE
The problem of target tracking in a 2-dimensional space can be well
represented using a random dynamical model [6]. The system state
at time t = 0,1,2, ... consists of the target position, rt = [r1,t ,r2,t ]

. ∈

R2, and velocity, vt = [v1,t ,v2,t ]
. ∈ R2 and its evolution can be

modeled as
xt = Axt−1 +Qut , (22)

where xt = [r.t ,v.
t ]. ∈ R4 is the state vector, ut ∈ R4 is a zero-

mean Gaussian process. Matrices A and Q are defined as

A =







1 0 To 0
0 1 0 To
0 0 1 0
0 0 0 1






and Q =









1
2T

2
o 0

0 1
2T

2
o

To 0
0 To









, (23)

where To > 0 is the observation period (i.e., the time between con-
secutive observations). The a priori pdf of the state is also Gaussian,

namely r0 ∼ N(0, 5
2I2) and v0 ∼ N(0, 1

8I2), where I2 is the 2×2
identity matrix.

Observations are collected through a set of N = 10 sensors that
measure the power of a radio signal transmitted from the target. The
sensor positions are known, denoted as bi ∈ R2, i = 1, . . . ,N, and
they lie in a square region of side L = 2000 meters. Assuming the
log-normal model widely used in cellular communications [13], the
observation at time t in the i-th sensor is

yi,t = gi(rt) ! 10log10

(

P0
‖rt −bi‖

γ
2

)

+mi,t (dB), i= 1, . . . ,N,

(24)
where P0 = 1 is the transmitted power, γ = 2 determines the rate
of the (exponential) power decay and mi,t is zero-mean Gaus-
sian observational noise with variance σ2

m = 1. We use yt =
[y1,t , . . . ,yN,t ]. ∈ RN to denote the collection of observations at
time t.

In order to estimate the sequence of positions r0:t from the
observations y1:t , we have applied a SMCM method and a mix-
ture Kalman filter (MKF) algorithm that approximates the pdf
p(r0:t |y1:t) by integrating out the sequence of velocities v0:t [6].
The SMCM technique is constructed as follows.
1. Cost function: We define

C(r1:t ,y1:t) ! λC(r1:t−1,y1:t−1)+c(rt ,yt), (25)

where c(rt ,yt) = ∑Ni=1 gi(rt) and λ = 0.99 is a forgetting fac-
tor. This definition implies, when compared with (4), that
H(a,b) = λb+ a. As a reference, we approximate the min-
ima of the marginal costs, c(rt ,yt), using an accelerated random
search (ARS) algorithm [1] with a large number of iterations.

2. Initialization: Let Mt = M = 3000 for all t. At t = 0, draw
M samples r

(i)
0 ∼ N([100,200].,I2) and set C(i)

0 = 0, i =
1, ...,M. Note that the initial state is actually distributed as
r0 ∼ N(0, 5

2I2). We generate the initial samples of the SMCM
algorithm far from the 0 point in order to clearly show how con-
vergence is achieved in a few time steps.

3. Recursive step: The selection pdf at time t+1 is

σt+1(i)∝
∣

∣

∣

∣

C(i)
t −min

k
C(k)
t +

1
M

∣

∣

∣

∣

−1
, (26)

hence indices are drawn as i(k) ∼ σt+1, k = 1, ...,M, and the se-

lected particles are
{

r̃
(k)
t = r

(i(k))
t ,C̃(k)

t =C(i(k))
t

}M

k=1
. The prop-

agation pdf is Gaussian,

r
(k)
t+1 ∼ ρ̃(rt+1|r̃

(k)
t ) = N

(

at(r̃
(k)
t ),402I2

)

, (27)

where at(r̃
(k)
t ) = r̃

(k)
t − r̃

(k)
t−1. Note that we do not generate sam-

ples from the velocity vector, but instead use a rough approxi-
mation of it (by subtracting two successive positions) in order
to generate new particles.
Figure 1 shows an example of application of the MKF and

SMCM algorithms to track the target from t = 0 to t = 266 with
To = 1 second. The SMCM algorithm recovers from its poor ini-
tialization in a few time steps and then stays locked to the true tra-
jectory for the complete simulation. However, from this example
it is apparent that the MKF algorithm attains a much better estima-
tion accuracy. This result could be easily expected, since the MKF
method fully exploits the statistical structure of the dynamic model.

Figure 2 shows the clouds of particles generated by the SMCM
algorithm at time instants t = 6,20,40,60,80 for another simulation
run. Again because of its poor initialization, the particle sets up to
time t = 6 do not wrap around the marginal-cost minimizers ap-
proximated using the ARS algorithm (shown as black squares). For
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Figure 1: A sample target trajectory (black solid line) and its esti-
mates using the MKF algorithm (green solid line) and the SMCM
technique (blue crosses). Sensor locations are depicted by red
squares.

t = 20,40,60,80, however, we see that the minimizers lie clearly
inside the particle clouds. This implies that, for sufficiently large
M, we can obtain particles as close as we wish to these minimizers,
as predicted by Proposition 2.

t=6

t=20

t=40
t=60 t=80

t=100

t=6

 1000

trajectory

m
et
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s
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−400

−200
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 400

−500  0  500
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Figure 2: Sets of samples generated by the SMCM method at differ-
ent time instants. It can be seen that, for t ≥ 20, the marginal-cost
minimizers (black squares) lie within the particle sets (dotted).

Figure 3 shows the smallest marginal costs attained by the
SMCM algorithm (solid line) from t = 1 to t = 100 for the same
simulation as in Figure 2. Here, we can clearly observe the con-
vergence period from t = 1 to t = 10. The specific values of the
smallest marginal costs at times t = 2,4,6, ...,20,40,60,80,100 for
the SMCM technique and the ARS algorithm are also shown. After
convergence (which occurs for t = 10) both methods yield practi-
cally identical marginal costs. We note that the number of iterations
of the ARS used in these simulations is one order of magnitude
higher than the number of particles, M.

5. CONCLUSIONS
We have revisited a recently proposed Monte Carlo methodology
aimed at the sequential minimization of cost functions that can
be recursively written in terms of the sequences of states and ob-
servations of a discrete-time Markovian dynamical system. The
technique, coined sequential Monte Carlo minimization (SMCM),
is more flexible than conventional sequential Monte Carlo (SMC)
methods, in the sense that algorithms can be derived with very weak
assumptions on the state and observation noise processes. The main
contribution of the paper is the analysis of the asymptotic conver-
gence of the state estimates produced by SMCM algorithms. We
have found sufficient conditions to ensure that, for sufficiently large
numbers of particles and conditional on an arbitrary but fixed se-
quence of observations, the novel method yields approximations of

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  20  40  60  80  100

m
ar

gi
na

l c
os

t

time

minima (ARS)
SMCM

Figure 3: Minimum marginal costs (approximated via the ARS al-
gorithm) and lowest marginal costs attained by the SMCM method.
For t > 10, both approximations match.

the minima of the sequence of marginal cost functions that con-
verge, in probability, to the true sequence of minima. Moreover, our
analysis shows that convergent SMCM algorithms can be designed
without a precise knowledge of the system dynamics. Instead, any
function of the system state that can be used to predict the mini-
mum of the marginal cost function at time t from the minimum at
time t−1 with a finite error can, in theory, be used.

A. PROOF OF PROPOSITION 1
Choose any t ∈ {t1 +1, . . . ,t2}. From Assumption 4 we deduce an
initial upper bound of d(Xt ,xt,o),

d(Xt ,xt,o) ≤ max
{

0,d(at−1(Xt−1),xt,o)−doutt
}

, (28)

which, using the triangular inequality,

d(at−1(Xt−1),xt,o) ≤ d(at−1(Xt−1),at−1(xt−1,o))

+d(at−1(xt−1,o),xt,o), (29)

and Assumption 1 yields

d(Xt ,xt,o)≤max
{

0,d(at−1(Xt−1),at−1(xt−1,o))+At−1 −doutt
}

.
(30)

From the definition of Dsupt and -sup
t , we have

d(at−1(Xt−1),at−1(xt−1,o)) ≤Dsupt = -sup
t +d(Xt−1,xt−1,o),

(31)
hence, substituting (31) into (30), we arrive at the inequality

d(Xt ,xt,o) ≤ max
{

0,d(Xt−1,xt−1,o)+-sup
t +At−1 −doutt

}

(32)
and, since we have previously defined Kt = doutt −-sup

t −At−1, we
readily obtain

d(Xt ,xt,o) ≤ max
{

0,d(Xt−1,xt−1,o)−Kt
}

. (33)

The assumption Kt ≥ 0, t > t1, enables us to recursively apply (33)
to find the relationship

d(Xt ,xt,o) ≤ max

{

0,d(Xt1 ,xt1,o)−
t
∑

n=t1+1
Kn

}

, (34)

valid for any t > t1. !

B. PROOF OF PROPOSITION 2
Part 1: Let ε,δ > 0 be arbitrarily small but fixed positive real num-
bers. Let X0 = ∪n0

i=1Oi,0, with arbitrary n0 < ∞ and bounded open
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cells Oi,0 ∈ Rnx . Since m(Oi,0) <∞ for all 1 ≤ i≤ n0 and, as a con-
sequence, m(X0) < ∞, we can build a proper uniform pdf in X0,
denoted ρ0 =U(X0), i.e., ρ0(x) = 1

m(X0)
> 0 for all x ∈ X0. If

we draw a set of M0 independent and identically distributed sam-
ples from ρ0, denoted Ω0 = {x

(i)
0 }M0

i=1, we can invoke the weak law
of large numbers (see, e.g., [5, Chapter 7]) to claim that, for any
x ∈ X0, there exists M0,ε ,δ ∈ N such that, for all M0 >M0,ε ,δ ,

Prob
{

d(x,x
(k)
0 ) < ε for some k ∈ {1, . . . ,M0}

}

> 1−δ . (35)

Next, we build the sequence {Xt}Tt=0 recursively. Let us as-
sume that Xt−1 has already been constructed, together with the as-
sociated set of discrete points {x

(i)
t−1}

Mt−1
i=1 drawn from a pdf ρt−1.

We define

η ! sup
x∈Xt−1,k∈{1,...,Mt−1

d(x,x
(k)
t−1) < ∞ (36)

and note that {x(i)
t−1}

Mt−1
i=1 is, then, a finite η-net (note that Mt−1

can be arbitrarily large but finite) of Xt−1 [8, Chapter 2]. As a
consequence, it turns out that

at−1(Xt−1) ⊆ ∪Mt−1
i=1 at−1

(

B(x
(i)
t−1,η)

)

, (37)

where B(x,η) ! {x′ ∈ Rnx : d(x,x′) < η} denotes an open ball
centered at x. Moreover, if we construct

Xt ! ∪Mt−1
i=1 B

(

at−1(x
(i)
t−1),rt

)

, (38)

with sufficiently large rt , then we can write

at−1(Xt−1) ⊆∪Mt−1
i=1 at−1

(

B(x
(i)
t−1,η)

)

⊂ Xt . (39)

In particular, (39) holds if we take

rt > sup
x,x′∈Rnx ,d(x,x′)<2η

d(at−1(x),at−1(x
′))

≥ sup
x,x′∈Xt−1,d(x,x′)<2η

d(at−1(x),at−1(x
′)), (40)

(note that the suprema are finite because of Assumption 2). Given
Mt−1 <∞, (38) and (39) ensure that Xt complies with Assumptions
3 and 4.

One possible way to build the pdf ρt associated to Xt (not
unique) is to define σt(k) > 0 for all k ∈ {1, . . . ,Mt−1} (this is pos-
sible, sinceMt−1 <∞) and ρ̃t(xt |x

(k)
t−1) =U

(

B

(

at−1(x
(k)
t−1),rt

))

.

Let x(k)
t ∼ ρt(xt), k = 1, ...,Mt . Since Mt−1 is arbitrarily large but

finite,m(Xt) <∞ and the weak law of large numbers can be applied
to ensure that, for any x ∈ Xt , there exists Mt,ε ,δ such that, for all
Mt >Mt,ε ,δ

Prob
{

d(x,x
(k)
t ) < ε for some k ∈ {1, . . . ,Mt}

}

> 1−δ . (41)

Part 2: In order to apply Proposition 1 to the sequence
{Xt}

t2
t=t1 we need to guarantee that doutt = d

(

X t ,at−1(Xt−1)
)

be
large enough. Specifically, the inequality

doutt > At−1 +-sup
t (42)

must hold for all t ∈ {t1, . . . ,t2}. From (38) and (40) we infer that

doutt ≥ rt − sup
x,x′∈Rnx ,d(x,x′)<2η

d(at−1(x),at−1(x
′)). (43)

Since it is always possible to choose rt such that

rt > sup
x,x′∈Rnx ,d(x,x′)<2η

d(at−1(x),at−1(x
′))+-sup

t +At−1 (44)

for all t ∈ {t1 +1, . . . ,t2} then it is also always possible to make the
inequality (42) hold for t ∈ {t1 + 1, . . . ,t2} and, as a consequence,
Kt = doutt −At−1 −-sup

t > 0 whenever t1 < t ≤ t2.
Therefore, we can apply Proposition 1 to obtain

d(Xt ,xt,o) ≤ max

{

0,d(Xt1 ,xt1,o)−
t

∑
n=t1+1

Kn

}

. (45)

Also, from the definition of sequences {Xt}Tt=0 and {ρt}t∈N, there
exists Mt,ε ,δ such that, for all Mt >Mt,ε ,δ and all x ∈ Xt ,

Prob{d(x(k)
t ,x) < ε, for some k ∈ {1, . . . ,Mt}} > 1−δ . (46)

Taking together (45) and (46), and setting Jt = ∑tn=t1 Kn, we arrive
at

Prob
{

d(x(k)
t ,xt,o) < ε+max{0,d(Xt1 ,xt1,o)−Jt}

for some k ∈ {1, . . . ,Mt}} > 1−δ . (47)

Since (42) holds when t1 < t ≤ t2, it is apparent that Jt > Jt−1. !
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