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ABSTRACT

This paper introduces a frequency-domain non-linear beamformer
that can perform speech source separation of under-determined
mixtures, is reasonably artifact-free and does not require prior
knowledge of the number of speakers. This beamformer utilises a
Gaussian mixture distribution to model the observation probability
density in each frequency bin, which can be learnt using the expec-
tation maximisation (EM) algorithm. A linear minimum-variance
distortionless response (MVDR) beamformer is determined for
each of the Gaussian components. The proposed non-linear beam-
former is then a weighted sum of these linear MVDR beamformers
and is therefore also distortionless. The relative contribution for
each linear MVDR beamformer is calculated as the posterior prob-
ability (specific to each time-frequency point) of its corresponding
Gaussian component. Simulation results of the non-linear beam-
former in under-determined mixtures with room reverberation con-
firm its ability to successfully separate speech sources with virtually
no artifacts.

1. INTRODUCTION

Speech separation is the problem of extracting a target speech sig-
nal from observations corrupted by interfering signals such as other
speech signals and background noise. Speech separation is used in
a wide range of applications, such as hearing aids, human-computer
interaction, surveillance, and hands-free telephony. In general, ob-
servations are obtained at the output of a set of microphones, each
receiving different combinations of the source signals. The use of
microphone arrays gives one the opportunity to exploit the fact that
the desired source and the interfering sources originate at different
points in space. The difficulty of the speech separation task depends
on the way in which the signals are mixed within the acoustic envi-
ronment. Speech separation is more difficult when the reverberation
time of the acoustic environment is large, and when there are fewer
microphones than sources.

Suppose that M source signals are mixed and observed at N
microphones. The signal at microphone j can be modeled as:

x j(t) =
M

∑
i=1

P−1

∑
p=0

a ji(p)si(t− p) (1)

where a ji represents the impulse response from source i to micro-
phone j, and P is the length of the impulse response between each
source-microphone pair. A mixture is termed a determined mixture
when the number of microphones is equal to the number of sources,
over-determined when the number of microphones is larger than the
number of sources, and under-determined when it is smaller.

One approach to speech separation is to use statistical modeling
of source signals. Independent component analysis (ICA) is one of
the major statistical tools for solving the problem of speech sepa-
ration. In ICA, separation is performed using the assumption that
the source signals are statistically independent with no information
on the direction of arrival of source signals, or microphone array
configuration. To perform source separation, we process the mix-
ture channels by a set of time-invariant demixing filters and sum

the filtered channels together. ICA implicitly estimates the source
directions by maximising the independence of the sources, and acts
as an adaptive null beamformer that reduces the undesired sources.

However, some aspects limit the application of ICA in real-
world environments. Most ICA methods assume the number of
sources is given a priori. In general, classical ICA techniques can-
not perform source separation when spatially spread sources are in-
volved, or in the under-determined mixtures case.

Another approach to speech separation is to use adaptive beam-
forming techniques. In adaptive beamforming, the microphone ar-
ray is used to form a spatial filter which can extract a signal from
a specific direction and reduce signals from other directions. For
example, in minimum-variance distortionless response (MVDR)
beamforming, the beamformer response is constrained so that sig-
nals from the direction of interest are passed with no distortion,
while it suppresses noise and interference at the output of an array of
microphones. In [2, 3], beamforming weights were calculated using
time-domain recursive algorithms. It was shown recently in [4] that
a frequency-domain MVDR (FMV) beamformer which performs
sample matrix inversion using statistics estimated from a short sam-
ple support gives better performance than time-domain recursive
algorithms in non-stationary acoustic environments. Compared to
ICA, adaptive beamforming can utilise the available information
about source signals and the microphone array configuration. In
addition, there is no need to model the source signals or determine
their number. Adaptive beamforming can attain excellent separa-
tion performance in determined or over-determined time-invariant
mixtures involving point sources. However, when spatially spread
sources are involved, or in under-determined mixtures, perfect at-
tenuation of all interferers becomes impossible and only partial in-
terference attenuation is possible. This, in turn, leads to perfor-
mance degradation.

In the under-determined mixing case, the assumption of spatial
diversity is insufficient to perform source separation, thereby neces-
sitating additional assumptions. One increasingly popular and very
useful assumption is that the sources have a sparse representation
in a given basis. The advantage of sparse signal representation is
that the probability of more than one active source is low. A sparse
representation of a speech signal can be achieved by a short term
Fourier transform (STFT). One popular approach to perform under-
determined speech separation is time-frequency (t-f) masking. This
approach is a special case of non-linear time-varying filtering that
estimates the desired source signal by:

ŝ(n, f ) =M(n, f )x j(n, f ) (2)

where M(n, f ) is a t-f mask containing positive gains which must
be adapted to extract the desired source from the observed mix-
tures. A popular method used to perform speech separation of
under-determined mixtures using only two microphones is the de-
generate unmixing estimation technique (DUET) [8, 5]. In DUET,
binary masks are determined from the spatial location information
contained in the STFT coefficients of the mixture channels. DUET
is capable of performing separation of two or more sources using
just two channels, and without significant computational complex-
ity. However, this method suffers from the so-called musical noise



or burbling artifacts due to binary masking of t-f points where the
sources overlap.

In this paper, we introduce a frequency-domain non-linear
beamformer that can perform speech separation of under-
determined mixtures and is distortionless. This beamformer utilises
Gaussian mixture models (GMMs) to model the observation proba-
bility density in each frequency bin. This in turn can be learnt using
the expectation maximisation (EM) algorithm. The signal estimator
comprises of a set of MVDR beamformers, one for each component
of the GMM. In order to estimate the signal, all beamformers are
concurrently applied to the observed signal, and the weighted sum
of the beamformers’ outputs is used as the signal estimator, where
the weights are the posterior probabilities of the GMM components.
This approach results in a “soft decision” filter for the observed sig-
nal. The resulting non-linear beamformer has low computational
costs, and does not need to know or estimate the number of sources.
It combines the benefits of non-linear time-varying separation in t-f
masking with the benefits of spatial filtering and distortionless re-
sponse in the linear MVDR beamformer.

The organisation of this paper is as follows. Section 2 reviews
the linear minimum mean square error (MMSE) beamformer, and
then introduces the GMM-based non-linear beamformer. In Sec-
tion 3, the EM algorithm is used to learn the GMM parameters.
The experimental conditions and simulation results are presented in
Section 4, followed by a discussion in Section 5.

2. OPTIMUM BEAMFORMERS

Consider a narrow band array signal x = [x1, ...,xN ]T that consists
of the desired signal arriving at the array from a known direction,
and an interference-plus-noise signal. That is,

x = se+v (3)

where e is the known N × 1 array response vector in the direction
of the desired source signal (the array manifold), and v is the N×1
complex vector of interference-plus-noise snapshots. We assume
that the signal and interference-plus-noise snapshots are uncorre-
lated. The interference has spatial correlation according to the an-
gles of the contributing interferers. The ultimate goal is to combine
the received signals in such as way that the interference-plus-noise
signal is reduced while the desired signal is preserved.

2.1 Linear MMSE beamformer

We first consider the optimum estimator whose output is the MMSE
estimate of the desired signal s in the presence of Gaussian interfer-
ence and noise, assuming known desired signal direction. We as-
sume that the desired source signal is a sample function from a zero-

mean complex-valued Gaussian random process, s∼ N(0,σ2
s ). We

also assume a zero-mean complex-valued Gaussian interference-
plus-noise, v ∼ N(0,Rv). Additionally, it is assumed that the sig-
nal and interference-plus-noise snapshots are uncorrelated. Hence,

x ∼ N(0,Rv + σ2
s ee

H), and x|s ∼ N(se,Rv), where (.)H denotes
the Hermitian transpose operator. The MMSE estimate of the de-
sired signal s is the mean of the a posteriori probability density of s
given x:

ŝMMSE = E [s|x] =
∫

p(s|x).sds (4)

This mean is referred to as the conditional mean. It can be shown
that the conditional mean can be expressed as [6]:

E [s|x] =
e
HR−1
v x

e
HR−1
v e

.

σ2
s

σ2
s +

(

e
HR−1
v e

)−1
(5)

The first term is an MVDR spatial filter, which suppresses the in-
terfering signals and noise without distorting the signal propagating
along the desired source direction. The second term is a single-
channel Wiener post-filter. We see that the MMSE estimator is just

a shrinkage of the MVDR beamformer. Unfortunately, the MMSE

beamformer depends explicitly on σ2
s which is typically unknown.

Therefore, we cannot implement the MMSE beamformer in prac-
tice. However, we can obtain a beamformer that does not depend

on σ2
s by assuming a distortionless response in the specified direc-

tion. The result is the MVDR beamformer. However, since we
have a distortionless response, we cannot exploit the sparsity of the
desired source signal. The MVDR beamforming process can be
written as:

ŝ = w
H
x

=
e
HR−1
v

e
HR−1
v e

x (6)

In practice, the desired signal may either be present all the time,
or it is difficult to estimate its activity periods. As a result of this, the
estimation of the signal-free interference-plus-noise covariance ma-
trix Rv is not possible. It can be shown, however, that if there is no
mismatch between the vector e used in the MVDR beamformer and
the true array manifold, then the estimator which uses the observed
signal covariance matrix Rx is identical to the estimator which uses
the signal-free interference-plus-noise covariance matrix Rv [6].

In general, the conditional mean estimator is not linear. The
MMSE estimator is linear if either the estimator is constrained to
be linear or the signals are Gaussian. Speech sources are gen-
erally non-stationary and non-Gaussian. This suggests extending
the optimum beamformers to exploit the non-stationarity and non-
Gaussianity of speech signals.

2.2 Frequency-domain MVDR (FMV) beamformer

Speech is a non-stationary process, but over short durations speech
signals can be considered stationary. In the FMV algorithm [4], it
is assumed that source activity patterns are constant over small time
intervals of speech signals in each frequency band, but could change
over longer time spans. In the FMV algorithm [4], frequency-
domain signals are stored in a buffer, and a correlation matrix is
calculated for each frequency bin using the 32 most recent STFT
values . MVDR weights are then calculated using the correlation
matrix. Therefore, in the FMV algorithm, new beamformer weights
are calculated every small time interval in order to reduce the con-
tribution to the extracted signal of interfering sources active during
that time interval, while having a distortionless response in the de-
sired source DOA. Only statistics gathered over a very short period
of time are used in the calculation of weights.

The quick adaptation of the beamformer weights can substan-
tially reduce a large number of non-stationary interferences while
utilising few microphones [4]. But the computational load is high
due to recurrent matrix inversions in each frequency band and the
need to have a very small step size in the STFT. In practice, how-
ever, source activity patterns can change abruptly between samples,
and the FMV will perform spatial filtering based on the average
power of the interfering sources active in the time interval during
which the beamformer weights are calculated. On the other hand,
the spatial distribution of the sources does not change very quickly,
and we can gather statistics for the desired signal estimator over
a longer time span. Thus the FMV beamformer is forced to com-
promise between long intervals (good statistics) and short interval
(rapid response).

2.3 GMM-based non-linear beamformer

In the frequency-domain, speech signals have a super-Gaussian
(sparse) distribution, due to a combination of the non-stationarity
and harmonic content of speech. Therefore, even if sources might
overlap at some t-f points, not all speech sources in a mixture are
active at the same t-f points. It is therefore advantageous to exploit
the sparsity property of speech signals in the frequency-domain in
order to perform separation in under-determined environments. In
order to model the speech non-Gaussianity, we propose to apply



GMMs, which are widely used for modeling highly complex prob-
ability densities.

In this section, we use a Gaussian mixture interference-plus-
noise model and find the optimum estimator whose output is the
MMSE estimate of the desired signal s assuming a known desired
signal direction. We shall describe the density of the interference-
plus-noise signal v as a mixture of k zero-mean Gaussians q =
1, ...,k with covariances Rv,q and mixing proportions cq:

p(v|θ ) =
k

∑
q=1

cq
1

πN
∣

∣Rv,q
∣

∣

exp{−v
HR−1
v,qv} (7)

where θ = (c1, ...,ck,Rv,1, ...,Rv,k), and the mixing proportions cq
are constrained to sum to one. The number of components k
controls the flexibility of the GMM. When dealing with mixture
models, it is useful to consider that there exists a hidden random
variable z, taking its values in a set Z = [1, ...,k] with probability
P(z= q) = cq, 1 ≤ q ≤ k. Therefore we have v|z= q ∼ N(0,Rv,q).
The MMSE estimate of the desired signal s is the mean of the a
posteriori probability density of s given x:

ŝMMSE = E [s|x]

=

∫

p(s|x).sds

=
∫

∑
q

p(s,z= q|x).sds

=

∫

∑
q

p(s|z= q,x).p(z= q|x).sds

= ∑
q

p(z= q|x)
∫

p(s|z= q,x).sds

= ∑
q

τq

∫

p(s|z= q,x).sds

= ∑
q

τqE [s|x,q] (8)

where τq = p(z = q|x) is the a posteriori probability that the com-
ponent q is active in the Gaussian mixture, when observing x.

We can see that the conditional mean E [s|x,q] is the MMSE
beamformer estimator derived in the previous section, with Rv =
Rv,q. In practice, modelling the signal-free interference-plus-noise
signal v is not possible, and therefore we model the observed signal
x instead. The desired signal estimator in equation (8) is a weighted
sum of linear beamformers wq over all the GMM components, and
the weighted coefficients are the a posteriori probabilities of the
GMM components τq. The mixture of beamformers (MOB) is given
by:

w =
k

∑
q=1

p(z= q|x)wq (9)

The resulting MOB is a weighted sum of distortionless MVDR
beamformers, where the weights sum to unity, therefore it is distor-
tionless in the look-direction.

3. MODEL LEARNING

Using the EM algorithm, we can estimate the observation model
density parameters θ = (c1, ...,ck,R1, ...,Rk) from a set of obser-
vations D = {x(n) : n = 1, ...,η}. The EM algorithm is used to
find a ML estimate of parameters in probabilistic models with la-
tent variables. The EM algorithm is an iterative algorithm with two
steps: (1) an expectation step (E-step), and (2) a maximisation step
(M-step). In the E-step, we calculate the probability of the latent
variables, given the observed variables and the current estimates of

Figure 1: Layout of room used in simulations.

the parameters. In the M-step, the new estimates of the parame-
ters are calculated to maximise the conditional expectation of the

complete data likelihood p(x,z|θ l) given the observed data under
the previous parameter value. For the estimation of the parameters
of the observation model, the EM algorithm may be performed as
follows: At each iteration l:

In the E-step, compute:

τ
(l)
q (n) =

c
(l)
q N

(

x(n)|R
(l)
q

)

∑kj=1 c
(l)
j N

(

x(n)|R
(l)
j

) (10)

where N is the complex Gaussian distribution.
In the M-step, compute:

R
(l+1)
q =

∑
η
n=1 τ

(l)
q (n)x(n)x(n)H

∑
η
n=1 τ

(l)
q (n)

(11)

c
(l+1)
q =

1

η

η

∑
n=1

τ
(l)
q (n) (12)

In order to perform frequency-domain beamforming, the sig-
nal received by each microphone is separated into narrow-band fre-
quency bins using the STFT. The EM algorithm is then applied sep-
arately in each frequency bin. For each t-f point (n, f ), the output
of the non-linear beamformer is given by:

ŝ(n, f ) =
k

∑
q=1

τq, fw
H
q, fx(n, f ) (13)

where:

w
H
q, f =

e
HR−1
q, f

e
HR−1
q, fe

(14)

4. EXPERIMENTAL EVALUATION

In order to illustrate the performance of the non-linear beamformer,
multichannel recordings of several speech sources were simulated
using impulse responses determined by the room image method [1]

using the rir.m1 function. The positions of the microphones and

1http://2pi.us/code/rir.m
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Figure 2: Average performance as a function of the number of Gaus-
sian components k in the GMM model.

the sources are illustrated in Figure 1. Two microphone arrays
were used. The first has three microphones with a 10 cm spac-
ing, and the second has two microphones with a 2 cm spacing.
The number of the sources was four. The sources were placed in
a semi-circle of radius 1 m around the microphone arrays at angles
φ = {45, 75, 100, 140}◦. We use the speech files used in the devel-
opment data in [7], where eight speech files were grouped into two
mixtures. The speech signals were of a duration equal to 10 s, and
were sampled at 16 kHz.

To measure the quality of the signal estimate ŝ with respect to
the original signal s, we use the signal to distortion ratio (SDR),
source to interference ratio (SIR) and the sources to artifacts ratio
(SAR) calculated as defined in [7]. Though we note that the SAR
measure does not fully capture the nature of the distortion in the
output and recommend that the reader also listens to the output sig-
nals. The speech files used in the simulations and the outputs can be

found online 2.In our results, the SDR, SIR and SAR values were
averaged over all the sources and mixtures.

Figure 2 shows the average performance at the output of the
non-linear beamformer in the anechoic case as a function of the
number of Gaussian components k in the GMM model. In this ex-
periment, four sources were operating in an anechoic environment.
The case of k = 1 is equivalent to a time-invariant MVDR beam-
former. The SIR increases with k, and then stays constant when
k≥ 7. The increase in the SIR is more pronounced in the two micro-
phone case, where the separation using a time-invariant beamformer
(k= 1) gives bad results. Although there is a unity-gain response in
the direction of the desired source signal, the SAR decreases with k.
The decrease in the SAR can be attributed to the non-linear attenu-
ation of the interfering sources. These artifacts therefore introduce
distortion only into the residual interfering signals. We stress that
the MOB is by definition distortionless in the look-direction.

Figure 3 shows the average performance as a function of the
room reverberation time when four sources are operating, and the
microphone array used has three microphones with a 10 cm micro-
phone spacing. We compare the performance of a mixture of beam-
formers with the performance of the FMV algorithm. A STFT of
frame size 1024 samples is used. In the FMV algorithm, the STFT
step size is 16 samples, while a step size of 256 samples is used in
the MOB algorithm. The MOB (k = 7) can attain an SIR of 7.5 dB
in anechoic rooms.

2http://www.see.ed.ac.uk/~s0565920/EUSIPCO08/

0 50 100 150 200 250
−5

0

5
4 Sources, 3 Microphones

S
D

R
 (

d
B

)

 

 
MOB, k=7

FMV

0 50 100 150 200 250
−5

0

5

10

S
IR

 (
d
B

)

 

 
MOB, k=7

FMV

0 50 100 150 200 250
−5

0

5

10

Reverberation Time (ms)

S
A

R
 (

d
B

)

 

 
MOB, k=7

FMV

Figure 3: Separation using three microphones: average perfor-
mance as a function of reverberation time.

Figure 4 shows the average performance as a function of the
room reverberation time when four sources are operating, and the
microphone array used has two microphones with a 2 cm micro-
phone spacing. We compare the performance of a mixture of beam-
formers with the performance of the DUET and FMV algorithms.
The DUET algorithm gives a high SIR, but suffers from a low SAR.
The low SAR can be attributed to the binary masking of t-f points
where the sources overlap. In contrast to the MOB, this distorts the
desired signal itself. In DUET, when the desired source is domi-
nant, we attribute all the received signal to the source, and when it
is not dominant, we null the output. This generates musical noise
due to spectro-temporal discontinuities in the source estimates.

Figures 5 and 6 show the average performance as a function of
the room reverberation time when 20 dB i.i.d. additive Gaussian
noise is added at the microphones. Both the MOB and FMV were
robust to the additive noise and achieved good separation perfor-
mance.

5. CONCLUSION

A frequency-domain non-linear beamformer was introduced and
applied to source separation for under-determined speech mixtures.
The beamformer is derived assuming non-Gaussian interference-
plus-noise signals modelled using a mixture of Gaussians distribu-
tion. This estimator introduces additional degrees of freedom to the
beamformer by exploiting the super-Gaussianity (sparsity) of the
interferers.

The non-linear beamformer has low computational costs, and
does not need to know or estimate the number of interfering sources.
The number of components in the mixture of Gaussians distribu-
tion controls the flexibility of the model and can be used to trade-
off complexity with performance. The non-linear beamformer can
be applied to microphone arrays with two or more microphones.
The unity gain constraint on the direction of arrival of the desired
source signal results in a clear desired signal output, and avoids any
permutation ambiguities. Simulation results in under-determined
mixtures with room reverberation confirmed the non-linear beam-
former’s ability to successfully separate speech sources.

In the future, we plan to investigate the use of an on-line EM
algorithm - instead of the batch EM algorithm used herein - that
allows for the observation model parameters to be updated in real-
time. Furthermore, we would like to compare the MOB against
other speech separation techniques.
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as a function of reverberation time.
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Figure 5: Separation using three microphones, with 20 dB noise:
average performance as a function of reverberation time.
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Figure 6: Separation using two microphones, with 20 dB noise:
average performance as a function of reverberation time.


