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Outline

= MAP estimation of Markov Random Fields

= Flow-based algorithms (“graph cuts’) for
optimization

= A few sample applications

= Current research problems
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Motivating example

= Suppose we want to find a bright object
against a dark background

— But some of the pixel values are slightly wrong

Input Best thresholded image
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Bayesian view

* FInd image x with the highest posterior
probability, given observed data y

arg max Pr(z|y) = arg min[— In Pr(y|z)—In Pr(z)]

= Assuming independent noise at each pixel:
— First term In minimization can be written

Z Dp(xp), Where Dp(zp) = — InPr(yp|zp)
P

= Write the prior as Pr{z) o exp(—G(z))
= Energy to minimize: E(z) = Dp(zp) + G(z)
D
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The key problem

= What is the right prior? What method do
we use to minimize the energy?

— These two issues are NOT independent
= Specialized optimization algorithms tend
to be better than general-purpose ones

— Any completely general energy minimization
algorithm is equivalent to exhaustive search!
= For a very natural class of priors, there
are now powerful specialized optimization
methods based on network flow
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Markov Random Field priors

= Suppose we want a purely local prior
— Directly depends only on immediate neighbors

r low ? high

“probability probability

— See, e.g., LI's book on MRF’s for a review
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MRF energy function

= In an MRF, &(z) = ) _ Vp4(zp, z¢)
2

— Think of V as the cost for two adjacent pixels
to have these particular labels

— For binary images, the natural cost is uniform
= MAP-MRF energy function:

E(z1,...,zn) = Z Dy(zp) + Z%,q(xp, Tq)
p

b,q
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Alternate view: optimization

* FInd best (least expensive) binary image
— Costs: C1 (labeling) and C2 (boundary)

= C1: Labeling a dark pixel as foreground
— Or, a bright pixel as background

= If we only had labeling costs, the cheapest
solution is the thresholded output

= C2: The length of the boundary between
foreground and background
— Penalizes isolated pixels or ragged boundaries
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Generalizations

= Many vision problems have this form
— Assign every pixel a label from a discrete set
— Each pixel has a cost for every label

— Information at individual pixels isn’'t enough!
e Need a spatial prior

= The optimization techniques are specific to
these energy function, but not to images
— See: [Kleinberg & Tardos JACM 02]

— Metric labeling problem: the MAP-MRF energy,
where V is a metric
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2. Flow-based algorithms
(‘““‘graph cuts™)
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Network flow can help

= For two labels, natural V i1s uniform
— Ising model

= The minimization problem can be solved
exactly using network flow
— Construction due to [Hammer 65]
— First applied to images by [Greig et al. 86]

= Classical Computer Science problem reduction
— Turn a new problem into a problem we can solve!
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Maximum flow problem

= Max flow problem:

— Each edge is a “pipe”

— Find the largest flow F of
“water” that can be sent
from the “source” to the
“sink” along the pipes

— Source output = sink
iInput = flow value

— Edge weights give the
pipe’s capacity

A graph with two terminals
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Minimum cut problem

acutC
I

= Min cut problem:
’: — Find the cheapest way to

0‘0‘ “gink” cut the edges so that the
‘ “source” is separated
‘ " from the “sink”

(O 00

A graph with two terminals

“source”

— Cut edges going from
source side to sink side

— Edge weights now
represent cutting “costs”
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Max flow/Min cut theorem

A graph with two terminals

Max Flow = Min Cut:

— Proof sketch: value of a
flow is value over any cut

— Maximum flow saturates
the edges along the
minimum cut

e Ford and Fulkerson,
1962

e Problem reduction!

Ford and Fulkerson gave
first polynomial time
algorithm for globally
optimal solution
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“Augmenting Path” algorithms

= Find a path from S
to T along non-
saturated edges

“source ‘ Q smk”
” n Increase flow along

this path until some
edge saturates

A graph with two terminals
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“Augmenting Path” algorithms

= Find a path from S
to T along non-
saturated edges

n Increase flow along
this path until some
edge saturates

n Find next path...

A graph with two terminals
n Increase flow...
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“Augmenting Path” algorithms

= Find a path from S
, to T along non-
! saturated edges

“source” ; ‘sink”
n Increase flow along

this path until some
edge saturates

_ _ Iterate until ...  all
A graph with two terminals paths from S to T have at

least one saturated edge
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Basic graph cut construction

= One non-terminal
vertex per pixel

= Each pixel connects D,(0)
directly to s,t

— Severing these edges l
corresponds to giving
labels 0,1 to the pixel

= Cost of cut iIs the cost
of the entire labeling
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lmportant properties

= Very efficient in practice
— Lots of short paths, so roughly linear

— Edmonds-Karp max flow algorithm finds
augmenting paths in breadth-first order

= Construction is symmetric (O vs 1)

= Specific to 2 labels
— Min cut with >2 labels is NP-hard
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Can this be generalized?

= NP-hard for Potts model [K/BVZ 01]

= Two main approaches
1. Exact solution [Ishikawa 03]
e Large graph, convex V (arbitrary D)
e Not the considered the right prior for vision
2. Approximate solutions [BVZ 01]
e Solve a binary labeling problem, repeatedly
e Expansion move algorithm
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Exact construction for L1 distance

= Graph for 2 pixels, 7 labels:

— 6 non-terminal vertices per (0)
pixel (6 =7 — 1) i
— Certain edges (Vvertical green
In the figure) correspond to
different labels for a pixel
e If we cut these edges, the

right number of horizontal
edges will also be cut

= Can be generalized

Dy(1) T oeeilooees
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Convex over-smoothing

= Convex priors are widely viewed In vision
as Iinappropriate (“non-robust’)
— These priors prefer globally smooth images
e Which is almost never suitable
= This is not just a theoretical argument
— It's observed In practice, even at global min
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Getting the boundaries right

Right answers Graph cuts
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Expansion move algorithm

Input labeling f

Green
expansion move
from f

| >

= Make green expansion move that most decreases E
— Then make the best blue expansion move, etc

— Done when no a-expansion move decreases the energy,
for any label o

— See [BVZ 01] for details
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Local improvement vs. Graph cuts

= Continuous vs. discrete
— No floating point with graph cuts

= Local min In line search vs. global min
= Minimize over a line vs. hypersurface
— Containing O(2") candidates

= Local minimum: weak vs. strong
— Within 1% of global min on benchmarks!

— Theoretical guarantees concerning distance
from global minimum

e 2-approximation for a common choice of E

i@j@ Cornell University
RS




2-approximation for Potts model
/A

a)ia) (I

Vear o

VA Y VY

optimal solution £~ local minimum f

S :ﬁ‘%
=

Summing up over all labels:
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Binary sub-problem

Input labeling
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ExXpansion move energy

Goal: find the binary image with lowest energy

Binary image energy E(b) is restricted version of original E
Depends on f,a

g; 1 Cornell University
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Regularity

= The binary energy function

Z Bp(zp) + Z Bp,q(xp, q)

D,q
IS regular [KzZ 04] If
BP:Q(O: O) + BP:Q(]-: 1) S BP:‘I(O: 1) + BP:Q(:L: O)

= Special case of submodularity, which is
iIntimately tied to minimum cuts
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When is binary energy regular?

= Can find cheapest a-expansion from f if

V(a:a) LN V(f(p):f(Q)) <
V(f(p)a) + V(a,f(q))

= This iIs a Monge property
— It holds If Vis a metric
— A few other cases also

= Until fairly recently, applications of graph
cuts required this assumption
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3. Sample applications
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Some important applications

= Computer vision

— Stereo and its variants, segmentation, etc.
= Computer graphics

— Texture synthesis

— Creating panoramas
— Digital photomontage

= Theoretical computer science
— Metric Labeling Problem

* Industrial applications
— Microsoft, Google, Siemens
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Application: texture synthesis
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Graphcuts video textures

SHdd - kd

a cut

/

Short video clip Long video clip
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Another example

original short clip synthetic infinite texture

=

@ Cornell University



Interactive Digital
Photomontage

Aseem Agarwala, Mira Dontcheva,

Maneesh Agrawala, Steven
Drucker, Alex Colburn,

Brian Curless, David Salesin,
Michael Cohen

University of Washington & Microsoft Research




4. Current research problems
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Much ongoing work

= Two examples of the kind of work that is
currently underway

— Beyond MAP estimation: measuring
uncertainty in graph cut solution [Kohli & Torr
ECCVO06]

— Beyond regularity: solving linear inverse
systems with graph cuts [Raj et al. MRMO7]
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* [Ko
pro

Beyond MAP

nli & Torr] consider this optimization
nlem: fix the label of a particular pixel,

andc

find the lowest energy labeling

— “Min-marginal energy”

— Compute this for all pixel/label pairs, then
normalize over each pixel

— Closely related to the max-marginal probability
e Maximum probability of all MRF configurations

where this pixel has this label
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Dynamic graph cuts

= [Kohli & Torr] show how to compute the
min-marginal energies fast

— For all pixel/label pairs!

= They use dynamic graph cuts

— The graph changes very little when we change
the label of a particular pixel

— We can re-use many of the old flows, which
means we can compute the cut efficiently

— Simple example: if capacities that are not
saturated increase, the cut doesn’t change
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Graph cuts and relaxations

= While graph cuts have been very
successful, the regularity constraint has
been a major limitation

— Without it, the binary subproblem (computing
the optimal expansion move) is NP-hard

= Much current work uses relaxations to
create better methods

— Some of the nicest work is by Komodakis

— We will describe how to use a graph cut
relaxation for linear inverse systems
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Relaxations

= Common sense example: find the
cheapest French-made item at a big store

— Requires exhaustive search

= Consider relaxing the French constraint
— Easy to solve (look at price list)
— Suppose it’s an item costing €0.10

= |If that item I1s French we are done

* If not, what do we know?
— Cheapest French item costs €0.10 or more!
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Relaxation idea

= Minimize same function over a bigger set
— If the answer lies in your original set, done!
— If not, you have a lower bound
— Standard example: LP-relaxation

= Why care about lower bounds?
— Provides confidence measure on output

— Occasionally proves global minimum for NP-
hard problems

— Useful for branch-and-bound algorithms
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Linear inverse systems

= Originally, we assumed that each intensity
was Iindependently affected by noise

— This is implicit in the first term of the energy
e Sum over individual pixels
— Suppose known linear system H is applied first

= First term costs are ||y — Hz|[, which is
S Dp(z(p)) + Dy(z(®)) +d,y - z(p) - z(p))

p,p’ s.t.

H(p,p")#0
for appropriate functions D, constants d
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Our energy function

E(x) = |ly—Hz|| + A > V(zp—xq)
(p.g)eN

General problem: edge-preserving solution of linear inverse systems
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Regularity Is a challenge

= For non-negative H, the binary energy
function is regular iff

fpSanq

= Can compute the optimal a-expansion
move for a pixel below a where all its
neighbors are above o (or vice-versa)

— This iIs true for very few pixels!
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Applying roof duality

= [Hammer et al 84] solves binary subproblem
— Graph construction called “roof duality”

— Introduced into computer vision by Viladimir
Kolmogorov in early 2005

= Basic idea: relaxation with nice properties
— Directly find a good expansion move

= Even happens when solution

— For some linear inverse systems, Iit’s often
optimal!
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Roof duality relaxation

= Alternate encoding of expansion moves

-

b b
= Can’t use graph cuts to minimize E(b)

= But we can minimize the relaxation E/(&,b)
— Note: E/(b,1 — b) = E(b)

i@j@ Cornell University
RS



Theoretical properties

= [Hammer et al 84] show this relaxation has
an amazing partial-optimality property
— Strong persistency: all consistent pixels have

the correct label
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Partial optimality i1s hard!

*Opt
(y=2)

False OptV
(y=1) J/
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MRI1 results [Raj et al. MRM 07]

Graph cuts
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Conclusions

= Flow-based algorithms (“graph cuts”) are
powerful tools for MAP estimation of MRF’s

— Common in computer vision, and elsewhere

= Lots of interest Iin using these methods for
even broader classes of problems

= Graph cuts can give strong results for
linear inverse systems with discontinuities

— There are lots of these (in MR and beyond)
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