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MAP estimation of Markov Random Fields

Flow-based algorithms (“graph cuts”) for 
optimizationoptimization

A few sample applicationsA few sample applications

C t h blCurrent research problems
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Motivating example
Suppose we want to find a bright object 
against a dark backgroundagainst a dark background
– But some of the pixel values are slightly wrong

Input Best thresholded image
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Bayesian view
Find image x with the highest posterior 
probability  given observed data yprobability, given observed data y 

Assuming independent noise at each pixel:Assuming independent noise at each pixel:
– First term in minimization can be written

Write the prior as Write the prior as 
Energy to minimize:
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The key problem
What is the right prior? What method do 
we use to minimize the energy?we use to minimize the energy?
– These two issues are NOT independent

Specialized optimization algorithms tend Specialized optimization algorithms tend 
to be better than general-purpose ones
– Any completely general energy minimization y p y g gy

algorithm is equivalent to exhaustive search!

For a very natural class of priors, there 
f l l dare now powerful specialized optimization 

methods based on network flow
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Markov Random Field priors

Suppose we want a purely local priorpp p y p
– Directly depends only on immediate neighbors

?

– See, e.g., Li’s book on MRF’s for a review
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MRF energy function
In an MRF, 

– Think of V as the cost for two adjacent pixels 
to have these particular labels

– For binary images, the natural cost is uniform

MAP-MRF energy function:

Likelihood Prior
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Alternate view: optimization
Find best (least expensive) binary image

Costs: C1 (labeling) and C2 (boundary)– Costs: C1 (labeling) and C2 (boundary)

C1: Labeling a dark pixel as foreground
– Or  a bright pixel as backgroundOr, a bright pixel as background

If we only had labeling costs, the cheapest 
solution is the thresholded outputsolution is the thresholded output
C2: The length of the boundary between 
foreground and backgroundg g
– Penalizes isolated pixels or ragged boundaries

8



Generalizations
Many vision problems have this form

Assign every pixel a label from a discrete set– Assign every pixel a label from a discrete set
– Each pixel has a cost for every label
– Information at individual pixels isn’t enough!Information at individual pixels isn t enough!

• Need a spatial prior

The optimization techniques are specific to p q p
these energy function, but not to images
– See: [Kleinberg & Tardos JACM 02] 
– Metric labeling problem: the MAP-MRF energy, 

where V is a metric
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2. Flow-based algorithms 
(“graph cuts”)
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Network flow can help
For two labels, natural V is uniform 

Ising model– Ising model

The minimization problem can be solved 
exactly using network flowexactly using network flow
– Construction due to [Hammer 65]

– First applied to images by [Greig et al. 86]pp g y [ g ]

Classical Computer Science problem reduction 
– Turn a new problem into a problem we can solve!
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Maximum flow problem

Max flow problem:
– Each edge is a “pipe”

a flow F

– Find the largest flow F of 
“water” that can be sent 
from the “source” to the 
“sink” along the pipes

“source”

S T
“sink”

“sink” along the pipes
– Source output = sink 

input = flow value
d h h– Edge weights give the 

pipe’s capacity
A graph with two terminals
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Minimum cut problem 

Min cut problem:
– Find the cheapest way to 

cut the edges so that the 

a cut C

cut the edges so that the 
“source” is separated 
from the “sink”
Cut edges going from 

“source”

S T
“sink”

– Cut edges going from 
source side to sink side

– Edge weights now 
represent cutting “costs”represent cutting “costs”

A graph with two terminals
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Max flow/Min cut theorem

Max Flow = Min Cut:
– Proof sketch: value of a 

flow is value over any cut
Maximum flow saturates – Maximum flow saturates 
the edges along the 
minimum cut

• Ford and Fulkerson, 
1962

“source”

S T
“sink”

1962
• Problem reduction!

Ford and Fulkerson gave g
first polynomial time 
algorithm for globally 
optimal solution A graph with two terminals
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“Augmenting Path” algorithms

Find a path from S Find a path from S 
to T along non-
saturated edges

“source”

S T
“sink”

n Increase flow along 
this path until somethis path until some 
edge saturates

A graph with two terminals
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“Augmenting Path” algorithms

Find a path from S Find a path from S 
to T along non-
saturated edges

“source”

S T
“sink”

n Increase flow along 
this path until somethis path until some 
edge saturates

A graph with two terminals n Find next path…
n Increase flow…
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“Augmenting Path” algorithms

Find a path from S Find a path from S 
to T along non-
saturated edges

“source”

S T
“sink”

n Increase flow along 
this path until somethis path until some 
edge saturates

A graph with two terminals
Iterate until …      all 

paths from S to T have at 
l t t t d d
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Basic graph cut construction
One non-terminal 
vertex per pixelvertex per pixel
Each pixel connects 
directly to s,t t

Dp(0)

directly to s,t
– Severing these edges 

corresponds to giving 

a cut
t

labels 0,1 to the pixel

Cost of cut is the cost 
of the enti e labelingof the entire labeling s

Dp(1)
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Important properties
Very efficient in practice

Lots of short paths  so roughly linear– Lots of short paths, so roughly linear
– Edmonds-Karp max flow algorithm finds 

augmenting paths in breadth-first order

Construction is symmetric (0 vs 1)
Specific to 2 labelsp
– Min cut with >2 labels is NP-hard
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Can this be generalized?
NP-hard for Potts model [K/BVZ 01]

Two main approachesTwo main approaches
1. Exact solution [Ishikawa 03]

• Large graph  convex V (arbitrary D)• Large graph, convex V (arbitrary D)
• Not the considered the right prior for vision

2. Approximate solutions [BVZ 01]
• Solve a binary labeling problem, repeatedly
• Expansion move algorithm
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Exact construction for L1 distance

Graph for 2 pixels, 7 labels:
6 non-terminal vertices per – 6 non-terminal vertices per 
pixel (6 = 7 – 1)

– Certain edges (vertical green 

Dp(0)

Dp(1)

Dq(0)
p1

p2

q1

q2
in the figure) correspond to 
different labels for a pixel
• If we cut these edges  the 

p q

• If we cut these edges, the 
right number of horizontal 
edges will also be cut

D (6) D (6)
p6 q6

Can be generalized Dp(6) Dq(6)

21



Convex over-smoothing
Convex priors are widely viewed in vision 
as inappropriate (“non-robust”)as inappropriate ( non robust )
– These priors prefer globally smooth images

• Which is almost never suitable

This is not just a theoretical argument
– It’s observed in practice, even at global min
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Getting the boundaries right

CorrelationGraph cutsRight answers
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Expansion move algorithm
Input labeling f

Green 
iexpansion move 

from f

Make green expansion move that most decreases E
– Then make the best blue expansion move, etc

Done when no expansion move decreases the energy  – Done when no α-expansion move decreases the energy, 
for any label α

– See [BVZ 01] for details
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Local improvement vs. Graph cuts

Continuous vs. discrete
No floating point with graph cuts– No floating point with graph cuts

Local min in line search vs. global min
Minimize over a line vs  hypersurfaceMinimize over a line vs. hypersurface
– Containing O(2n) candidates

Local minimum: weak vs  strongLocal minimum: weak vs. strong
– Within 1% of global min on benchmarks!
– Theoretical guarantees concerning distance Theoretical guarantees concerning distance 

from global minimum
• 2-approximation for a common choice of E
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2-approximation for Potts modelpp

local minimumoptimal solution

Summing up over all labels:
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Binary sub-problem

Input labeling Expansion move Binary image

27



Expansion move energy

Goal: find the binary image with lowest energy

Binary image energy E(b) is restricted version of original EBinary image energy E(b) is restricted version of original E
Depends on f,α
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Regularity
The binary energy function 

is regular [KZ 04] if 

Special case of submodularity, which is 
intimately tied to minimum cuts
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When is binary energy regular?

Can find cheapest α-expansion from f if

This is a Monge property
It h ld  if V i   t i– It holds if V is a metric

– A few other cases also

Until fairly recently  applications of graph Until fairly recently, applications of graph 
cuts required this assumption
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3. Sample applications3. Sample applications
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Some important applications
Computer vision

Stereo and its variants  segmentation  etc– Stereo and its variants, segmentation, etc.

Computer graphics
– Texture synthesisTexture synthesis
– Creating panoramas
– Digital photomontageg p g

Theoretical computer science
– Metric Labeling Problemg

Industrial applications
– Microsoft, Google, Siemens
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Application: texture synthesis
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“Graphcut textures” [K atra et al 03]Graphcut textures  [Kwatra et al 03]

33



Graphcuts video textures

ta cut

21

Short video clip Long video clip
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Another example

original short clip synthetic infinite texture
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Interactive Digital 
Ph t tPhotomontage

Aseem Agarwala, Mira Dontcheva, 
Maneesh Agrawala, Steven 

Drucker, Alex Colburn, 
Brian Curless, David Salesin, 

Michael Cohen

University of Washington & Microsoft Research



4. Current research problems4. Current research problems
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Much ongoing work
Two examples of the kind of work that is 
currently underwaycurrently underway
– Beyond MAP estimation: measuring 

uncertainty in graph cut solution [Kohli & Torr 
ECCV06]

– Beyond regularity: solving linear inverse 
systems with graph cuts [Raj et al  MRM07]systems with graph cuts [Raj et al. MRM07]
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Beyond MAP
[Kohli & Torr] consider this optimization 
problem: fix the label of a particular pixel  problem: fix the label of a particular pixel, 
and find the lowest energy labeling
– “Min-marginal energy” g gy
– Compute this for all pixel/label pairs, then 

normalize over each pixel
– Closely related to the max-marginal probability

• Maximum probability of all MRF configurations 
where this pixel has this labelwhere this pixel has this label
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Dynamic graph cuts
[Kohli & Torr] show how to compute the 
min-marginal energies fastmin marginal energies fast
– For all pixel/label pairs!

They use dynamic graph cutsThey use dynamic graph cuts
– The graph changes very little when we change 

the label of a particular pixel
– We can re-use many of the old flows, which 

means we can compute the cut efficiently
Simple example: if capacities that are not – Simple example: if capacities that are not 
saturated increase, the cut doesn’t change
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Graph cuts and relaxations
While graph cuts have been very 
successful  the regularity constraint has successful, the regularity constraint has 
been a major limitation
– Without it, the binary subproblem (computing , y p ( p g

the optimal expansion move) is NP-hard

Much current work uses relaxations to 
create better methods
– Some of the nicest work is by Komodakis

W  ill d ib  h  t    h t – We will describe how to use a graph cut 
relaxation for linear inverse systems
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Relaxations
Common sense example: find the 
cheapest French-made item at a big storecheapest French made item at a big store
– Requires exhaustive search

Consider relaxing the French constraintConsider relaxing the French constraint
– Easy to solve (look at price list)
– Suppose it’s an item costing €0.10pp g

If that item is French we are done
If not, what do we know?If not, what do we know?
– Cheapest French item costs €0.10 or more!
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Relaxation idea
Minimize same function over a bigger set

If the answer lies in your original set  done!– If the answer lies in your original set, done!
– If not, you have a lower bound
– Standard example: LP-relaxationStandard example: LP relaxation

Why care about lower bounds?
– Provides confidence measure on outputp
– Occasionally proves global minimum for NP-

hard problems
– Useful for branch-and-bound algorithms
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Linear inverse systems
Originally, we assumed that each intensity 
was independently affected by noisewas independently affected by noise
– This is implicit in the first term of the energy

• Sum over individual pixelsp
– Suppose known linear system H is applied first

First term costs are            , which is

for appropriate functions D, constants d
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Our energy function

Makes x piecewise smoothMakes Hx close to y

General problem: edge-preserving solution of linear inverse systems
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Regularity is a challenge
For non-negative H, the binary energy 
function is regular iff function is regular iff 

Can compute the optimal α-expansion Can compute the optimal α-expansion 
move for a pixel below α where all its 
neighbors are above α (or vice-versa)neighbors are above α (or vice versa)
– This is true for very few pixels!

46



Applying roof duality
[Hammer et al 84] solves binary subproblem

Graph construction called “roof duality”– Graph construction called roof duality
– Introduced into computer vision by Vladimir 

Kolmogorov in early 2005

Basic idea: relaxation with nice properties
– Directly find a good expansion move

Even happens when solution
– For some linear inverse systems, it’s often 

optimal!
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Roof duality relaxation
Alternate encoding of expansion moves

Can’t use graph cuts to minimizeg p
But we can minimize the relaxation   
– Note: 
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Theoretical properties
[Hammer et al 84] show this relaxation has 
an amazing partial-optimality propertyan amazing partial optimality property
– Strong persistency: all consistent pixels have 

the correct label
?

49



Partial optimality is hard!

•Opt 
(y=2)

•False Opt 
(y=1)



MRI results [Raj et al. MRM 07]

SENSE
(= LS)

Graph cuts
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Conclusions
Flow-based algorithms (“graph cuts”) are 
powerful tools for MAP estimation of MRF’spowerful tools for MAP estimation of MRF s
– Common in computer vision, and elsewhere

Lots of interest in using these methods for Lots of interest in using these methods for 
even broader classes of problems
Graph cuts can give strong results for Graph cuts can give strong results for 
linear inverse systems with discontinuities
– There are lots of these (in MR and beyond)
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