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ABSTRACT
A frequency-domain adaptive algorithm for acoustic echo
cancellation is proposed. This new algorithm dynamically
adjusts its step-size according to the sparseness variation
in acoustic impulse responses that arise in a mobile envi-
ronment. Inheriting the beneficial properties of both the
fast convergence of the improved proportionate normal-
ized least mean squares (IPNLMS) and the efficient im-
plementation of the multidelay filtering (MDF) algorithm,
the proposed sparseness-controlled improved proportionate
MDF (SC-IPMDF) algorithm is evaluated using white Gaus-
sian noise (WGN) and speech input signals with acoustic im-
pulse responses of various degrees of sparseness. Simulation
results show an improved performance over the MDF and im-
proved proportionate MDF (IPMDF) algorithms with only a
modest increase in computational complexity.

1. INTRODUCTION

With recent developments of hands-free mobile telephony,
acoustic echo due to the coupling between the loudspeaker
and microphone has been found to significantly degrade user
experience in terms of perceived voice quality in a variety
of applications such as in-vehicle communications and tele-
conferencing [1]. A typical acoustic echo cancellation (AEC)
set up for a Loudspeaker-Room-Microphone system (LRMS)
is shown in Fig. 1. Defining the tap-input vector x(n) =
[x(n) . . . x(n−L+1)]T and the L-tap unknown acoustic im-
pulse response (AIR) h(n) = [h0(n) . . . hL−1(n)]T with [·]T
being the vector transposition, the LRMS output signal can
be given by

y(n) = hT (n)x(n)+w(n), (1)

where w(n) is additive noise. The objective of AEC is hence
to avoid y(n) from being transmitted back to the far-end loud-
speaker. This can be achieved by employing adaptive algo-
rithms such as the normalized least-mean-square (NLMS)
algorithm [2], where h(n) is modeled by an adaptive filter
ĥ(n) = [ĥ0(n) . . . ĥL−1(n)]T which minimizes the a priori
error function

e(n) = y(n)− ĥT (n−1)x(n). (2)

The tracking capabilities of these NLMS-based algorithms
can also be exploited to cope with the time-varying nature of
AIRs which is due to, for example, movement of the acoustic
source or changes in the acoustic environment.

Recently, it has been realized that AIRs such as occur in
AEC are to some extent sparse by an amount which is also
time-varying [3]. It was shown in [4] that shorter distance be-
tween the loudspeaker and microphone gives rise to a more
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Figure 1: Adaptive system for acoustic echo cancel-
lation (AEC) in a Loudspeaker-Room-Microphone sys-
tem (LRMS).

sparse AIR. For hands-free teleconferencing where wireless
microphones attached to moving users are used along with
a fixed loudspeaker, the time variation of sparseness can be
significant. Additionally, in outdoor and urban environments
where reflections of the speech signals are considerably re-
duced, the sparseness of the AIR can be much greater than
typical indoor environments and equally, if not more, vari-
able. Therefore, adaptive AEC algorithms robust to sparse-
ness variation of the AIRs are highly desirable.

One of the first algorithms proposed to exploit the sparse-
ness of the impulse response in the context of network echo
cancellation (NEC) [1] is the proportionate NLMS (PNLMS)
algorithm [5]. The network impulse response is typically of
length 64-128 ms and characterized by an unknown bulk de-
lay dependent on network loading, encoding and jitter buffer
delays [6]. Such response comprises an “active” region for
only 8-12 ms and a dominating “inactive” region where co-
efficients magnitudes are close to zero, causing the impulse
response sparse. The PNLMS algorithm employs a step-size
for each coefficient of the adaptive filter that is proportion-
ate to its magnitude at each iteration. However, PNLMS is
well known to suffer from slow convergence when estimat-
ing dispersive AIRs [7]. The improved PNLMS (IPNLMS)
algorithm [8] addresses this problem by incorporating both
proportionate and NLMS adaptation at the cost of requiring
twice as many multiplications per iteration as NLMS.

Frequency-domain adaptive algorithms such as the fast-
LMS (FLMS) algorithm [9] have become popular because of
their efficient implementation. One of the drawbacks, how-
ever, is the delay introduced between the input and output,
which is equivalent to the length of the adaptive filter L. For
AIRs with several hundreds of coefficients, this delay can be
significant. To overcome this, the multidelay filtering (MDF)
algorithm was proposed in [10] to partition the adaptive filter
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into blocks each of length N such that the delay is reduced by
a factor of K = L/N, although K = 1 is the optimum choice in
terms of computational complexity. Combining proportion-
ate updating of filter coefficients, the improved proportionate
MDF (IPMDF) algorithm [11] achieves a fast convergence
with a low delay for K > 1 in NEC, and a similar improve-
ment has also been shown in [12] for blind estimation of mul-
tichannel AIRs.

The literature of adaptive sparse system identification
seems rich, but the time variation of sparseness is rarely
addressed. In [13], a sparseness-controlled IPNLMS (SC-
IPNLMS) algorithm for NEC was proposed, where the
sparseness of ĥ(n) at each iteration is computed and utilized
to determine the step-size at the next iteration. More recently,
the SC-PNLMS algorithm [4] also achieves fast convergence
by dynamically adjusting step-size according to time-varying
sparseness of AIRs in the context of AEC.

In this paper, we propose to integrate sparseness control
into the MDF domain and develop a low-delay and fast track-
ing frequency-domain adaptive algorithm for AEC. The clas-
sic IPNLMS, MDF and IPMDF algorithms are first reviewed
in Section 2. We then show, in Section 3, how the sparseness
variation of the adaptive filter can be exploited to determine
the proportionate step-size at each iteration. Incorporating
such sparseness variation with the MDF structure, the pro-
posed sparseness-controlled IPMDF (SC-IPMDF) algorithm
is developed. Simulation results shown in Section 5 demon-
strate a faster tracking performance for both sparse and dis-
persive AIRs compared to MDF and IPMDF algorithms in
the context of AEC.

2. ALGORITHMS REVIEW

2.1 The IPNLMS algorithm

The IPNLMS algorithm [8] was proposed based on the well-
known NLMS algorithm [2]. NLMS-based adaptive algo-
rithms can generally be described by (2) and the following
set of equations:

ĥ(n) = ĥ(n−1)+
µQ(n−1)x(n)e(n)

xT (n)Q(n−1)x(n)+δ
, (3)

Q(n−1) = diag{q0(n−1) . . . qL−1(n−1)} , (4)

where µ is the step-size and δ is the regularization parame-
ter. The L×L diagonal matrix Q(n) is introduced to control
the step-size for each filter coefficient. Since a uniform µ is
employed for all filter coefficients in NLMS, Q(n) = IL×L
with IL×L being an L× L identity matrix. The PNLMS al-
gorithm [5] assigns higher step-sizes for coefficients with
higher magnitude using the control matrix Q(n). To im-
prove the convergence speed of NLMS on sparse impulse
response and for PNLMS on dispersive impulse response,
the IPNLMS algorithm was proposed to combine proportion-
ate (PNLMS) and non-proportionate (NLMS) adaptation us-
ing a weighting factor αIP such that the diagonal elements of
Q(n) are given by

ql(n) =
1−αIP

2L
+

(1+αIP)|ĥl(n)|
2‖ĥ(n)‖1 + ε

, 0≤ l ≤ L−1, (5)

where ‖ · ‖ represents the absolute value, ‖ · ‖1 denotes the
l1-norm and ε is a small constant.

In order to achieve the same steady-state performance
as that of NLMS given the same step-size, the regular-
ization parameter in (3) for IPNLMS should be taken as
δIP = (1−αIP)/(2L)δNLMS [8]. As can be seen from (5),
IPNLMS is equivalent to NLMS for αIP =−1, and PNLMS
for αIP = 1. In other words, the significance of the pro-
portionate and non-proportionate step-size distribution with
respect to each filter coefficient varies with αIP. To allow
IPNLMS to converge faster than NLMS and PNLMS regard-
less of the impulse response nature, it was shown in [8] that
good choices of αIP values are 0, −0.5 and −0.75. In con-
trast to such fixed weighting factor, our objective in this paper
is to propose a variable weighting factor α(n) that correlates
with the sparseness variation of the adaptive filter so as to
improve the tracking capability of echo path changes for the
resultant adaptive algorithm.

2.2 The MDF and IPMDF algorithms

The MDF algorithm [10] was proposed to mitigate the prob-
lem of delay inherent in FLMS [9] since the latter computes
the output only every L samples. In the MDF structure, the
adaptive filter of length L is partitioned into K subfilters each
of length N with L = KN. Consequently, the delay of MDF
is reduced by a factor of L/N compared to FLMS.

To describe the MDF algorithm, we first define m as
the frame index and the following time-domain quanti-
ties given by X(m) = [x(mN) . . .x(mN + N − 1)], y(m) =
[y(mN) . . .y(mN +N−1)]T , ĥ(m) = [ĥT

0 (m) . . . ĥT
K−1(m)]T ,

ŷ(m) = [ŷ(mN) . . . ŷ(mN +N−1)]T = XT (m)ĥ(m), e(m) =
y(m)− ŷ(m), where ĥk(m) = [ĥkN(m) . . . ĥkN+N−1(m)]T is
the kth subfilter for k = 0, . . . ,K−1. The 2N×1 input vector

χ(m−k) = [x(mN−kN−N) . . . x(mN−kN +N−1)]T (6)

hence denotes the kth input block. Define next F as the
Fourier matrix, the 2N×2N diagonal matrix

D(m− k) = diag
{
Fχ(m− k)

}
= diag

{
χ(m− k)

}
(7)

is obtained with elements containing the Fourier transform
of χ(m− k). With the following frequency-domain quan-

tities y(m) = F
[

0N×1
y(m)

]
, ĥk(m) = F

[
ĥk(m)
0N×1

]
, e(m) =

F
[

0N×1
e(m)

]
, G01 = FW01F−1, W01 =

[
0N×N 0N×N
0N×N IN×N

]
,

G10 = FW10F−1 and W10 =
[

IN×N 0N×N
0N×N 0N×N

]
where

0N×N is an N×N null matrix and IN×N is an N×N iden-
tity matrix, the MDF algorithm can be described by [10]

e(m) = y(m)−G01
K−1

∑
k=0

D(m− k)ĥk(m−1), (8)

SMDF(m) = λSMDF(m−1)+(1−λ )D∗(m)D(m), (9)

ĥk(m) = ĥk(m−1)+ µG10D∗(m− k)×
[SMDF(m)+δMDF]−1e(m), (10)

where ∗ denotes complex conjugate, 0� λ < 1 is the forget-
ting factor and µ = β (1−λ ) is the step-size with 0 < β ≤ 1.
Letting σ2

x be the input signal variance, the initial regular-
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ization parameters [1] are SMDF(0) = σ2
x /100 and δMDF =

20σ2
x N/L. For N = L and K = 1, MDF is equivalent to

FLMS [9].
The IPMDF algorithm [11] was proposed to combine the

fast convergence of IPNLMS and efficient implementation
brought about by the MDF structure. To achieve this, the
step-size control matrix with diagonal elements given by (5)
is imposed to each subfilter ĥk(m) in the time domain such
that

qkN+l(m) =
1−αIPMDF

2L
+

(1+αIPMDF)|ĥkN+l(m)|
2‖ĥ(m)‖1 + ε

(11)

for k = 0,1, . . . ,K−1, l = 0,1, . . . ,N−1, and

Qk(m) = diag{qkN(m) qkN+1(m) . . . qkN+N−1(m)}. (12)

Accordingly, the filter coefficients adaptation is performed in
the time domain by using (8), (9) and

ĥk(m) = ĥk(m−1)+LµQk(m)G̃10D∗(m− k)×
[SIPMDF(m)+δIPMDF]−1e(m), (13)

where G̃10 = [IN×N 0N×N ]F−1. The initial regularization
parameters are given by SIPMDF(0) = (1−αIPMDF)SMDF(0)
and δIPMDF = (1−αIPMDF)δMDF.

3. THE SPARSENESS-CONTROLLED IPMDF
ALGORITHM

We now incorporate the sparseness control into the IPMDF
algorithm. The degree of sparseness for an impulse response
can be quantified by [14]

ξ (n) =
L

L−
√

L

(
1− ‖h(n)‖1√

L ‖h(n)‖2

)
(14)

for 0 ≤ ξ (n) ≤ 1, where ξ (n) is positively correlated with
the sparseness and ‖ · ‖2 denoting the l2-norm. In [4], it has
been shown that ξ (n) is inversely proportionate to the dis-
tance between the loudspeaker and the microphone. For ap-
plications involving hands-free telephony devices, such dis-
tance is highly time-varying. Considering such sparseness
variation, (14) can be invoked at each iteration allowing an
automatic adjustment of the weighting between proportion-
ate and non-proportionate updating of the filter coefficients.
The resultant variable weighting factor, as a function of the
sparseness of the kth subfilter

ξ̂ (m) =
L

L−
√

L

(
1− ‖ĥ(m)‖1√

L ‖ĥ(m)‖2

)
, (15)

gives rise to the proposed SC-IPMDF algorithm.
As mentioned in Section 2, the weighting factor αIPNLMS

and αIPMDF were originally introduced to determine the sig-
nificance of proportionate and non-proportionate step-size
controls. To show the importance of αIPMDF for IPMDF
in terms of the convergence performance, consider an ex-
ample case where two AIRs of length L = 1024 were sim-
ulated using the method of images [15] in a room of di-
mension 8× 10× 3 m with 0.57 reflection coefficient and
a sampling frequency of 8 kHz. The loudspeaker is fixed at
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Figure 2: Acoustic impulse responses obtained using the
method of images [15] in a room with dimension of 8×10×
3 m where the distances between the loudspeaker and micro-
phone are (a) 0.9 m and (b) 7.7 m. The resultant sparseness
is (a) 0.83 and (b) 0.59 respectively.

4× 9.1× 1.6 m in the LRMS with the distance to the mi-
crophone being 0.9 m and 7.7 m so as to obtain AIRs with
different sparseness as shown in Fig. 2(a) and Fig. 2(b), re-
spectively. The sparseness measure of these AIRs are com-
puted using (14) giving (a) ξ (n) = 0.83 and (b) ξ (n) = 0.59.
Employing the normalized misalignment given by

η(n) =
‖h(n)− ĥ(n)‖2

2

‖h(n)‖2
2

(16)

as the performance measure, the IPMDF algorithm were then
tested using a zero mean WGN as inputs while another WGN
sequence w(n) was added to give an SNR of 20 dB. We also
assumed that the length of ĥ(n) is equivalent to that of the
unknown h(n).

Figure 3 shows the effect of αIPMDF to the performance
of IPMDF in terms of η(n) for β = 0.2, K = 8 in estimat-
ing the AIRs as shown in Fig. 2(a) and Fig. 2(b) respectively.
As can be seen, a smaller value of αIPMDF is desirable for
sparse AIR while αIPMDF with larger value is favorable for
dispersive AIR. It can be observed that αIPMDF = −0.3 for
sparse identification gives worse initial convergence perfor-
mance for IPMDF. This is because, when αIPMDF =−0.3, it
emphasizes more on proportionate term than that for the case
when αIPMDF = −0.75. Since the ‖ĥ(m)‖1 in (11) is very
small during the initial convergence for a sparse impulse re-
sponse, αIPMDF = −0.3 results in more noisy step-size and
therefore, giving worse initial convergence.

The desired effect can be further verified by plotting T20,
which denotes the minimum time for IPMDF to reach the
−20 dB normalized misalignment given a specific αIPMDF
value, against various sparseness associated with 8 simulated
AIRs generated using the aforementioned setup. As it can be
seen from Fig. 4 that an approximately monotonic relation-
ship can be observed. By performing a least-squares curve
fitting to such relationship, we propose to form a variable
weighting factor as a function of ξ̂ (m) such that

αSC−IPMDF(m) = 1−2ξ̂ (m). (17)

As a result, the proposed SC-IPMDF algorithm can be de-
scribed by (8), (9), (11) - (13), (15) and (17).
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Figure 3: Convergence of IPMDF for different values of αIPMDF using WGN input signal. Impulse responses in Fig. 2 (a) and
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4. COMPLEXITY

The relative complexity of MDF, IPMDF and SC-IPMDF in
terms of the total number of additions, multiplications and
divisions per iteration for adaptation of filter coefficients is
shown in Table 1 for K = 1. Since the IPMDF and SC-
IPMDF algorithms update the filter coefficients in time do-
main, they require additional L log2(L) real multiplications
and L log2(L) additions to compute the radix-2 FFT. The ad-
ditional complexity of the proposed SC-IPMDF also arises
from the computation of the sparseness measure ξ̂ (m). Given
that L/(L−

√
L) in (14) can be computed off-line and that

l1-norm is available from IPMDF weight updation, the pro-
posed SC-IPMDF only requires additional L + 2 additions,
L +3 multiplications and 1 division, compared to that of IP-
MDF.

5. SIMULATIONS

We present simulation results to evaluate the performance of
the proposed SC-IPMDF algorithm in the context of AEC. A
time-varying AIR was obtained by concatenating two simu-

Table 1: Computational complexity of MDF, IPMDF and
SC-IPMDF.

Algorithm Addition Multiplication Division

MDF 4L log2(L)+4L 4L log2(L)+6L L

IPMDF 5L log2(L)+6L+2 5L log2(L)+8L+2 L+2

SC-IPMDF 5L log2(L)+7L+4 5L log2(L)+9L+5 L+3

lated AIRs as shown in Fig. 2 with two echo path changes
being introduced, i.e., from Fig. 2(b) to 2(a) and then back to
Fig. 2(b). The convergence performance was measured using
η(n) defined in (16). We assumed that the length of ĥ(n) is
equivalent to that of the unknown h(n). Proportionality con-
trol factor αIPMDF =−0.75 was used for the standard IPMDF
algorithm and the other simulation parameters were same as
in the case described in Section 3.

Figure 5 first compares the convergence performance
of MDF, IPMDF and SC-IPMDF using WGN as the input
signal. The step-size parameter for each algorithm is set
βMDF = βIPMDF = βSC−IPMDF = 0.2. It can be seen from
Fig. 5 that the convergence rate of SC-IPMDF is as fast as
IPMDF for dispersive and achieves a faster convergence per-
formance over MDF by up to 7 dB in terms of normalized
misalignment. After the echo path change, the SC-IPMDF
exhibits a faster tracking performance over both MDF and
IPMDF giving approximately 11 dB and 5 dB gain in nor-
malized misalignment, respectively. After the final echo path
change, SC-IPMDF maintains its high initial convergence
rate over MDF and IPMDF giving respectively 9 dB and 2 dB
improvements.

Figure 6 shows the results using a male speech input sig-
nal. As can be seen, the proposed SC-IPMDF algorithm
achieves the highest rate of convergence, giving approxi-
mately 1 dB and 4 dB improvements during initial conver-
gence compared to IPMDF and MDF for the dispersive AIR.
For sparse AIR, improvements of up to 3 dB and 7 dB nor-
malized misalignment for SC-IPMDF can be seen in compar-
ison with IPMDF and MDF, respectively. It is also noted that
SC-IPMDF achieves better steady-state performance than IP-
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Figure 5: Relative convergence of MDF, IPMDF and SC-
IPMDF using WGN input signal with an echo path changes
at 8 s and 16 s with βMDF = βIPMDF = βSC−IPMDF = 0.2,
K = 8, SNR = 20 dB. The dispersive and sparse AIRs are
as shown in Fig. 2(b) and Fig. 2(a) respectively.

MDF and MDF after the final echo path change.

6. CONCLUSIONS

We have proposed SC-IPMDF algorithm for AEC, which
integrates the sparseness control mechanism into the MDF
structure. This is achieved by forming a variable weighting
factor for combining proportionate and non-proportionate tap
updating schemes according to the sparseness of the adap-
tive filter, which allows the proposed SC-IPMDF algorithm
to be robust to the sparseness variation of AIRs due to its
time-varying nature. The incorporation of the MDF struc-
ture ensures a reduced delay for the filter output. Simulation
results show an improved convergence and tracking perfor-
mance in terms of normalized misalignment over MDF and
IPMDF algorithms.
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