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ABSTRACT
We consider a distributed detection system formed by a large num-
ber of local detectors and a fusion center that performs a Neyman-
Pearson fusion of the binary quantizations of the sensor observa-
tions. The aforementioned local decisions are taken with no kind
of cooperation and transmitted to the fusion center over error free
parallel access channels. Furthermore, the devices are located on
a rectangular lattice so that sensors belonging to a specific row or
column are equally spaced. For each hypothesis H0 and H1, the
correlation structure of the local decisions is modelled with a two-
dimensional causal field where the rows and columns are outcomes
of the same first-order binary Markov chain. Under this scenario,
we derive a closed-form error exponent for the Neyman-Pearson
fusion of the local decisions. Afterwards, using the derived error
exponent we study the effect of different design parameters of the
network on its overall detection performance.

1. INTRODUCTION

The design of sensor networks that undertake a distributed detection
task has drawn much attention in last years because of the stringent
constraints under which they operate. Initially, with the aim of ex-
ploiting all their detection potential, many researchers developed
several data fusion techniques that maximize the detection perfor-
mance of the fusion rule employed by the data fusion center and
performed on the sensor observations. Among others, for the case
where the sensor observations are conditionally independent under
each hypothesis of the test, we recall the optimum fusion rule de-
rived by Chair and Varshney [1] under the Bayesian set up and the
corresponding one obtained by Thomopoulos et al. [2] under the
Neyman-Pearson formulation. Afterwards, holding the assumption
of independent local sensor observations given any hypothesis, a big
number of studies obtain theoretical results that yield design guide-
lines aimed at optimizing the overall detection performance of a
parallel fusion network. For instance, Tsitsiklis [3] showed that the
optimal binary decentralized detection is achieved by identical local
detection rules when the number of sensors is arbitrarily large. Ad-
ditionally, in connection with the previous result Chamberland and
Veeravalli [4] proved that having more sensors exceeds asymptoti-
cally the benefits of getting detailed information from each sensor.

More recently, the studies of the aforementioned sensor net-
works considered dependence among the local sensor observations
under each one of the hypothesis involved in the inference problem.
In a scenario where the sensors send conditionally dependent local
decisions to the fusion center, one of the first results on this topic [5]
showed that the optimum fusion rule under the Neyman-Pearson
criteria consist in the joint likelihood ratio of the messages received
by the data fusion center. Meanwhile, when a Bayes hypothesis
test is performed and the sensor observations are dependent, Kam
et al. [6] generalized the structure of the optimal data fusion rule.
Later, given the aforementioned optimal fusion rules, as it happened
when the sensor observations are conditionally independent, under
the distributed detection paradigm various works have provided an-
swers to different design aspects regarding the deployment of the
network as well as the use of its limited resources. For instance, us-
ing the large deviation theory works such as [7]-[11] have obtained
amenable tools that allow to study the effect of different physical

parameters of a one-dimensional network on its overall detection
performance.

Although there are many results on the topic of decentralized
detection with dependent observations, the literature that solve the
cited problem in a two-dimensional (2-D) setting is less extensive.
Some of the latest results that address this issue are [12] and [13].
Under the Neyman-Pearson formulation Anandkumar et al. [12] de-
rive a closed-form error exponent when a test for independence is
considered, and when the correlation structure of the sensor ob-
servations is given by a nearest-neighbour Gauss-Markov Random
Field (G.M.R.F.). In this way, the authors characterize the detection
performance of the employed Neyman-Pearson fusion rule with re-
spect to different design parameters of the network, e.g. the density
of the deployment or the signal to noise ratio of the observations
performed by the devices. In [13] the authors investigate the amount
of information obtainable from a sensor network where the devices
are located on a 2-D lattice, and where under each one of the two
hypothesis the observations received by the fusion center are dis-
tributed according to a 2-D hidden G.M.R.F. defined by a symmetric
first-order conditional autoregression (S.F.C.A.R.) model.

However, up to now no work obtains analytically tractable ex-
pressions that allow the design of 2-D sensor networks where the
devices are located on a rectangular grid and the Neyman-Pearson
fusion rule is performed on dependent quantized summaries of the
sensor observations. Motivated by this last fact, in the spirit of [7]-
[10], and [12], we extend the work made in [11] in order to derive
a closed-form error exponent for the Neyman-Pearson fusion rule
performed by the fusion center of the sensor network shown in Fig-
ure 1. Specifically, modelling the correlation structure of the local
decisions by means of a 2-D random process constructed from a
first-order binary Markov chain, this closed-form expression is ob-
tained for a scenario where the dependent local decisions are taken
with no kind of cooperation, and they are noiseless transmitted to
the fusion center. This way, we provide an amenable tool that links
the detection performance of a 2-D version of the sensor network
described in [5] with some of its physical and design features.

2. PROBLEM STATEMENT

We consider a network formed by a data fusion center and NL de-
vices located on a 2-D lattice IN,L where, as it is shown in Figure 1,
the sensors belonging to a specific row or column of the lattice are
equally spaced. With the aim of deciding what state of the phe-
nomenon is present, H0 or H1, the distributed system undertakes
the following steps. Firstly, each device performs a local obser-
vation of the environment, yi, j. Secondly, they apply a binary de-
tection rule to it, γ(yi, j), not necessarily based on a log-likelihood
ratio test (L.L.R.T.). This way, each device makes a local decision,
ui, j = γ(yi, j), regarding the presence or absence of the phenomenon
we want to detect. Thirdly, the binary local quantizations of the sen-
sor observations are transmitted to the fusion center over error free
parallel access channels. Finally, based on the NL local decisions
taken by the devices of the network, the fusion center makes a global
decision, uFC , under the Neyman-Pearson formulation. Considering
that the correlation structure of the local decisions is hypothesis de-
pendent and modelled with a 2-D causal field where the rows and
columns are outcomes of the same first-order binary Markov chain,
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Figure 1: Block diagram of a 2-D parallel fusion network.

we have the following inference problem at the fusion center

Hk: U ∼ 2-D process where the binary local quantizations
belonging to a specific row i ∈ {1, . . . ,N} or column
j ∈ {1, . . . ,L} form the same first-order Markov
chain, Mk, with transition matrix

Πk =

p(0,0)
k (d,Pk) p(0,1)

k (d,Pk)

p(1,0)
k (d,Pk) p(1,1)

k (d,Pk)


T


(1)

where, for k ∈ {0,1},
• U = [U1,1,U2,1, . . . ,UN,1, . . . ,U1,L, . . . ,UN,L]T , defined on U NL

with U = {0,1}, denotes the NL local decisions performed by
the NL devices that form the network.

• p(0,1)
k (d,Pk) and p(1,0)

k (d,Pk) are the transition probabilities
of the Markov chain, Mk, that extends along the rows and
columns of IN L under Hk, i.e. for um,um−1 ∈ {0,1}

p(um−1,um)
k (d,Pk) = P(Um = um|Um−1 = um−1,d,Pk,Hk)

(2)

• d is the distance between two neighbour devices that belong to
the same row or column of the lattice IN,L.

• Pk is the set of physical and design parameters of the network
that being known by the data fusion center are arguments of
the transition probabilities associated with the Markov chain Mk
[e.g. the employed local decision rules or the physical properties
of the environment where the network is deployed].
Note that, due to the causality of the correlation model as-

sumed under Hk, the local decision Ui, j is independent of the rest of
the binary local quantizations when some of the ones taken by the
neighbour nodes are known. Specifically, given the hypothesis Hk,
with k ∈ {0,1}, the local decisions responsible for the aforemen-
tioned conditional independence are established by the directions
that the Markov chains Mk adopt when extending along the rows
and columns of the 2-D lattice, IN,L. For instance, as it happens
in [14], if we assume that the Markov chains under both hypothe-
sis extend from left to right along the rows and from top to bottom
along the columns, under H0 and H1 the decision Ui, j is indepen-
dent of the rest of the local detectors when the binary local quanti-
zations Ui, j−1 and Ui+1, j are known. Without loss of generality and
from now and on, given the hypothesis Hk we are going to assume
the previous direction in the flow of the Markov chains present in
each column and row of IN,L. Consequently, given the correlation
structure assumed for U under both hypothesis, if we also consider
that the spacing between the nearest neighbours, d, is known by the
data fusion center, the optimum Neyman-Pearson detection rule [5]

performed at the fusion center is given by

uFC = ln

(
PU|Q,H(u|Q0,H0)
PU|Q,H(u|Q1,H1)

)
H0
≷
H1

τ (3)

where, for k ∈ {0,1}, Qk = d∪Pk, τ is a constant chosen to bound
the overall false alarm probability to a given value α ∈ (0,1)

PFA(Q0,Q1,N ·L) = ∑
u∈V 1

NL(τ)
PU|Q,H(u|Q0,H0)≤ α (4)

V 1
NL(τ) is equal to the acceptance region of hypothesis H1 and, after

omitting whatever kind of dependency on Qk for the sake of sim-
plicity, PU|H(u|Hk) is the joint probability mass function (p.m.f.)
of the local decisions under the hypothesis Hk

PU|H(u|Hk) =PU1,1|H(u1,1|Hk)×
N

∏
i=2

PUi,1|Ui−1,1,H(ui,1|ui−1,1,Hk)

×
L

∏
j=2

PUN, j |UN, j−1,H(uN , j|uN , j−1,Hk)

×
1

∏
i=N−1

L

∏
j=2

PUi, j |Ui+1, j ,Ui, j−1,H(ui, j|ui+1, j,ui, j−1,Hk)

(5)

with PU1,1|H(u1,1|Hk) equal to the p.m.f. of the initial state associ-
ated with the 2-D random process present under Hk,

PUi, j |Ui−1, j ,H(ui, j|ui−1, j,Hk) = ∑
(r,s)∈U 2

p(s,r)
k δ [r−ui, j]δ [s−ui−1, j]

(6)

for all i ∈ {2,3, . . . ,N} and j ∈ {1,2, . . . ,L},

PUi, j |Ui, j−1,H(ui, j|ui, j−1,Hk) = ∑
(r,s)∈U 2

p(s,r)
k δ [r−ui, j]δ [s−ui, j−1]

(7)

for all i ∈ {1,2, . . . ,N} and j ∈ {2,3, . . . ,L}, and

PUi, j |Ui+1, j ,Ui, j−1,H(ui, j|ui+1, j,ui, j−1,Hk)

= ∑
(r,s,t)∈U 3

p(t,r)
k p(r,s)

k

p̂(t,s)
k

δ [r−ui, j]δ [s−ui+1, j]δ [t−ui, j−1]
(8)

when i ∈ {1,2, . . . ,N−1}, j ∈ {2,3, . . . ,L} and

p̂(t,s)
k =

1

∑
v=0

p(t,v)
k p(v,s)

k (9)

3. ERROR EXPONENT

Here we provide a tool that allows the design and analysis of a sen-
sor network as the one described in the previous section. To be spe-
cific, based on information theoretic results we derive a design tool
that links the detection performance of the Neyman-Pearson test (3)
with different physical and design parameters of the network shown
in Figure 1. In order to accomplish this aim, we would want to
characterize the overall probability of detection of the network

PD(Q0,Q1,N ·L) = ∑
u∈V 1

NL(τ)
PU|H(u|H1) (10)

when a fixed constraint is imposed on the overall false alarm proba-
bility, i.e. when PFA(Q0,Q1,N · L) ≤ α ∈ (0,1). Taking into ac-
count that the derivation of a closed-form expression for (10) is
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not feasible, our approach has focused on using more easy-to-use
measures of performance provided by the large deviations theory
corresponding with Neyman-Pearson hypothesis tests. In partic-
ular, following the trend of related publications as well as focus-
ing on our distributed detection problem, our objective is to de-
rive a closed-form expression of the exponential rate of decay in
PM(Q0,Q1,N ·L) = 1−PD(Q0,Q1,N ·L) as N and L approach in-
finity and when PFA(Q0,Q1,N · L) ≤ α ∈ (0,1). As it is proved
in [15], this problem results in calculating the almost-sure limit un-
der H0 (a.s. in H0) of the asymptotic Kullback-Leibler rate

K , lim
N,L→∞

− 1
N ·L

log(PM(Q0,Q1,N ·L))

= lim
N,L→∞

1
N ·L

ln

(
PU|H(u|H0)
PU|H(u|H1)

)
(a.s. in H0)

(11)

In this way, we arrive at the following theorem.

Theorem 1. Suppose that 0 < p(um−1,um)
k < 1 for all um,um−1,k ∈

{0,1} and that the p.m.f. of the local decision U1,1 under H0 is ab-
solutely continuous with respect to the corresponding one under H1,
PU1,1|H(u1,1|H0)� PU1,1|H(u1,1|H1). Then, given a fixed constraint
PFA(Q0,Q1,N ·L)≤ α ∈ (0,1), the best Neyman-Pearson error ex-
ponent for the distributed detection problem given by Equation (1)
is

K = ∑
(r,s,t)∈U 3

π
(t)
0 p(t,r)

0 p(r,s)
0 ln

(
p(t,r)

0 p(r,s)
0 p̂(t,s)

1

p(t,r)
1 p(r,s)

1 p̂(t,s)
0

)
= D(P(ui, j|ui+1, j,ui, j−1,H0)||P(ui, j|ui+1, j,ui, j−1,H1))

(12)

where
• U 3 equals the cartesian product of the set U = {0,1} with

itself, three times.

• π
(0)
0 = 1−π

(1)
0 = P(u = 0|H0) = p(1,0)

0

p(1,0)
0 +p(0,1)

0

is the unique sta-

tionary probability of deciding H0 when the 2-D random process
constructed from the Markov chain, M0, is present.

• D(P(ui, j|ui+1, j,ui, j−1,H0)||P(ui, j|ui+1, j,ui, j−1,H1)) is the
conditional Kullback-Leibler divergence of

PUi, j |Ui+1, j ,Ui, j−1,H(ui, j|ui+1, j,ui, j−1,H0)

and
PUi, j |Ui+1, j ,Ui, j−1,H(ui, j|ui+1, j,ui, j−1,H1)

in the stationary regime.

Proof. Since the error exponent for the Neyman-Pearson detector
with a fixed level α ∈ (0,1) is given in implicit form by (11), we fo-
cus on the calculation of this limit for the scenario described in Sec-
tion 2. Taking into account the factorization of PU|H(u|Hk) given
in (5) as well as the characterizations provided in (6)-(9), Equa-
tion (11) can be written as follows

K = lim
N,L→∞

1
N ·L

ln

(
PU1,1|H(u1,1|H0)

PU1,1|H(u1,1|H1)

)
(a.s in H0)︸ ︷︷ ︸

,A1

+ ∑
r,s∈U 2

ln

(
p(s,r)

0

p(s,r)
1

)
lim

N,L→∞

N0(r,s|u
N,1
2,1 )

N ·L︸ ︷︷ ︸
,A2

+ ∑
r,s∈U 2

ln

(
p(s,r)

0

p(s,r)
1

)
lim

N,L→∞

N0(r,s|u
N,L
N,2 )

N ·L︸ ︷︷ ︸
,A3

+ ∑
r,s,t∈U 3

ln

(
p(t,r)

0 p(r,s)
0 p̂(t,s)

1

p(t,r)
1 p(r,s)

1 p̂(t,s)
0

)
lim

N,L→∞

N0(r,s, t|u
N−1,L
1,2 )

N ·L︸ ︷︷ ︸
,A4

(13)

where

• N0(ui, j,ui−1, j|uN,1
2,1 ) equals the number of times that the pair

(ui,1,ui−1,1) occurs in the sequence of local decisions uN,1
2,1 =

{ui, j : 2≤ i≤N, j = 1} performed by the corresponding devices
under the hypothesis H0.

• N0(ui, j,ui, j−1|uN,L
N,2 ) equals the number of times that the pair

(uN, j,uN, j−1) occurs in the sequence of local decisions uN,L
N,2 =

{ui, j : i = N,2≤ j≤ L} performed by the corresponding devices
under the hypothesis H0.

• N0(ui, j,ui+1, j,ui, j−1|uN−1,L
1,2 ) equals the number of times that

the triple (ui, j,ui+1, j,ui, j−1) occurs in the lattice of local deci-

sions uN−1,L
1,2 = {ui, j : 1≤ i≤ N−1,2≤ j ≤ L} performed by

the corresponding devices under the hypothesis H0.
Starting from the assumptions that ensure the existence of K we

calculate each one of the terms that appear in the right hand side of
K. In particular, we are going to prove that Equation (13) yields (12)
when PU1,1|H(u1,1|H0) � PU1,1|H(u1,1|H1) and 0 < p(um−1,um)

k < 1
holds for all um,um−1,k ∈ {0,1}. Firstly, if we take into account
that PU1,1|H(u1,1|H0)� PU1,1|H(u1,1|H1) we have that

ln

(
PU1,1|H(u1,1|H0)

PU1,1|H(u1,1|H1)

)
< ∞ (14)

and therefore, we prove that A1 vanishes as N and L go to infinity.
Secondly, we derive the terms A2 and A3. Considering the assump-
tions that ensure the existence of K, we guarantee the regularity of
the Markov chain, Mk, that extends along the rows and columns of
IN,L under Hk with k ∈ {0,1} (see [16]). Consequently, given the
hypothesis Hk and knowing that the sequences uN,1

2,1 and uN,L
N,2 are

outcomes of the same first-order binary Markov chain, M0, as it is
proved in Theorem 1 of [11] under the same initial assumptions, we
obtain

∑
r,s∈U 2

ln

(
p(s,r)

0

p(s,r)
1

)
lim

N→∞

N0(r,s|u
N,1
2,1 )

N

= ∑
r,s∈U 2

ln

(
p(s,r)

0

p(s,r)
1

)
lim

L→∞

N0(r,s|u
N,L
N,2 )

L

= ∑
r,s∈U 2

π
(s)
0 p(s,r)

0 ln

(
p(s,r)

0

p(s,r)
1

)
< ∞

(15)

From (15) we can easily show that A2 and A3 are equal to zero. Fi-
nally, we evaluate A4. For this calculation, we need to obtain an
asymptotic closed-form expression for the empirical joint probabil-
ity of the triple, (ui, j,ui+1, j,ui, j−1) ∈ U 3 given the hypothesis H0

and the lattice uN−1,L
1,2 . From the stationarity of the regular Markov

chain, M0, regarding the type of (ui, j,ui+1, j,ui, j−1) in uN−1,L
1,2 it is

straightforward to prove that

lim
N,L→∞

N0(ui, j,ui+1, j,ui, j−1)|uN−1,L
1,2 )

N ·L

= π
(ui, j−1)
0 p(ui, j−1,ui, j)

0 p(ui, j ,ui+1, j)
0

(16)
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if, as we assumed without loss of generality, M0 extends from left to
right and from top to bottom along the rows and columns of IN,L,
respectively. Lastly, a pointwise substitution of (16) into the defi-
nition of A4 results in the closed-form error exponent provided in
Theorem 1. This way we conclude the proof.

4. CHARACTERIZATION OF THE ERROR EXPONENT

Through synthetic experiments based on the evaluation of K for a
specific physical model of the transition probabilities, in this sec-
tion we give some insights into the behaviour of K when the de-
pendence strength among the local decisions varies. As a measure
of the aforementioned dependence we use the parameter derived
in [11]. To be more precise, this index captures the mean correlation
strength among the random variables corresponding with neighbour
steps of a first-order Markov chain with binary state space

ρ =


P(H0)ρ0 +P(H1)ρ1 When the local decisions are

dependent under H0 and H1.
ρk When the local decisions are only

dependent under Hk.
(17)

where, ∀k ∈ {0,1}, P(Hk) ∈ (0,1) denotes the prior probability of
hypothesis Hk and

ρk = 1− p(0,1)
k − p(1,0)

k
(18)

Regarding the physical model considered for the transition proba-
bilities of the Markov chains, M0 and M1, we have that

p(0,1)
k = 1− p(0,0)

k = ξk(1−mke−γk d) (19)

and
p(1,0)

k = 1− p(1,1)
k = (1−ξk)(1−mke−γk d) (20)

where, for k ∈ {0,1},
• ξk is the probability of false alarm or detection probability of the

local detectors when independence among the local decisions is
assumed under H0 or H1 respectively.

• γk is a strictly positive constant that indicates the exponential
rate of growth of the transition probabilities p(0,1)

k and p(1,0)
k as

d increases.
• mk is a strictly positive constant that, taking on values less than

one, controls the correlation between the pair of local decisions
(Ui−1, j,Ui, j) and (Ui, j,Ui, j+1) when the distance between the
devices involved in each pair is zero, i.e d = 0.

Note that the physical model considered for p(0,1)
k and p(1,0)

k ful-
fills some regularity conditions that typically appear in a detection
scenario. On the one hand, due to the fact that the transition prob-
abilities are monotonically concave increasing functions of d, the
correlation strength among the local decisions decays as the devices
become farther apart. On the other hand, modelling the so-called
nugget effect, according to the definition provided in [5] the local
decisions are never going to be maximally dependent under Hk since
the transition probabilities are greater than zero for mk < 1. Hence,
given Hk and the physical model described in (19) and (20), as im-
posing a minimum distance between two neighbour nodes belong-
ing to a specific row or column of IN,L, the correlation strength
between the corresponding local decisions is always less than one
for mk < 1. In addition to the previous regularity conditions, we
can also appreciate that, in the model described by (19) and (20),
the local decisions Ui, j, with i ∈ {1,2, . . . ,N} and j ∈ {1,2, . . . ,L},
are only independent when d equals infinity.

In Figure 2, we plot the error exponent of Equation (12) as a
function of the mean correlation strength provided through Equa-
tions (17) and (18). Theoretical curves of this figure have been gen-
erated when the local decisions are only dependent under H1 and ξ1
is equal to {0.8,0.98,0.998}. As it can be appreciated, regardless
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Figure 2: Neyman-Pearson optimum error exponent, K, as a func-
tion of the mean correlation strength among neighbour binary de-
cisions, ρ , when they are only dependent under H1 and ξ1 =
{0.8,0.98,0.998}. Parameters: ξ0 = 0.1, γ0 = 2, γ1 = 0.9, and
m1 = 1−10−4.

the value of ξ1, K initially decreases as ρ increases, and after a spe-
cific value ρ∗, it increases as ρ approaches one. On the one hand,
the initial decrease of K in ρ happens because there is a loss of
discrimination between H0 and H1 when the information provided
by each sensor is more and more correlated without improving the
detection performance of the sensors. On the other hand, the in-
creasing behaviour of K with respect to ρ occurs because excessive
redundancy among the local decisions is informative when the local
decisions are only dependent under H1. Note that, under H0, each
sensor performs its decisions independently of the rest the network.
However, due to the fact that ρ = ρ1, under H1, all the local de-
tectors tend to decide the same hypothesis when ρ approaches one.
When the dependence under H1 exceeds a specific threshold, ρ∗,
the agreement that exists among the values taken by the major part
of the binary local quantizations can be used in order to discriminate
H1 against H0. As it can be proved through a careful analysis, the
aforementioned value, ρ∗, depends on physical parameters of the
network such as ξ0 and ξ1. In particular, confirming the behaviour
observed in Figure 2 we can prove that ρ∗ is shifted closer to one as
the ratio ξ1/ξ0 increases.

In order to conclude the analysis of Figure 2, we can check a
pair of analytic results that, being omitted for the sake of brevity,
show the consistency of Theorem 1 with similar studies performed
when the dependence among the local decisions results in bound-
ary values of ρ . Firstly, when ρ equals zero, we can appreci-
ate that, for all the plotted curves, K collapses to the subsequent
Kullback-Leibler divergence, D(B(ξ0)||B(ξ1)), where B(ξk) de-
notes a Bernoulli random variable with probability of success equal
to ξk. Taking into account that the local decisions are indepen-
dent and identically distributed (i.i.d.) when ρ equals zero, this
behaviour is consistent with the Neyman-Pearson error exponent
stated by the Stein’s Lemma [17]. Subsequently, if we center on
the evolution of the curves shown in Figure 2 when ρ approaches
one, we can appreciate that the derived error exponent, K, diverges
regardless the value of ξ1. Due to the fact that p(r,s)

1 /∈ (0,1) for
all r,s ∈ {0,1} as long as ρ1 = 1, a brief justification of the previ-
ous behaviour is based on the fact that some of the initial assump-
tions of Theorem 1 do not hold. In order to be more precise, when
the local decisions are maximally dependent under H1, the support
of PU|H(u|H1) only consists of the events where all the devices
decide the same hypothesis [5]. However, under conditional inde-
pendence given the hypothesis H0, the support of PU|H(u|H0) is
formed by the two aforementioned events as well as the rest of the
2NL binary NL-tuples. Consequently, PU|H(u|H1)� PU|H(u|H0)
holds, and therefore, the existence of K can not be ensured although
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Figure 3: Neyman-Pearson optimum error exponent, K, as a func-
tion of the mean correlation strength among neighbour binary de-
cisions, ρ , when they are dependent under H1 and H0, and ξ1 =
{0.8,0.98,0.998}. Parameters: ξ0 = 0.1, γ0 = 2, γ1 = 0.9, P(Hk) =
0.5 and mk = 1−10−4 with k ∈ {0,1}.

PU1,1|H(u1,1|H0)� PU1,1|H(u1,1|H1) occurs.
Next, in Figure 3 we make the same analysis as in Figure 2

with the proviso that the local decisions are also dependent under
H0. For each one of the curves plotted in Figure 3 we can observe
that K decreases as the correlation strength, ρ , increases from the
case of independent local decisions, ρ = 0, to the case of maximally
dependent local decisions, ρ = 1, as the definition provided in [5].
In addition, it can be seen that the amount of decrease in K becomes
smaller as ρ increases. Nevertheless, unlike the case where a corre-
lation structure is only present under H1, different simulations show
that the monotonicity of K with respect to ρ is not common to all the
possible set of values that can take the parameters involved in (19)
and (20). What is more, when the local decisions are dependent un-
der both hypothesis the characterization of the monotonicity of K
as a function of ρ is not analytically tractable.

Finally, we analyze the convergence of K shown in Figure 3
for ρ = 0 and ρ = 1. Being consistent with the behaviour ob-
served in Figure 2, when ρ = 0 the error exponent reduces to
D(B(ξ0)||B(ξ1)), i.e. the Stein’s Lemma. Meanwhile, as it is ex-
pected from analytic studies, in Figure 3 when ρ goes to one the
aforementioned error exponent converges to zero independently of
the parameters that appear in the physical model described in (19)
and (20). In addition to the analytic proof that we have omitted,
an intuitive interpretation of the previous convergence can be found
by realizing that excessive dependence among the local decisions
under both hypothesis makes the reading of an extra device pro-
vide the fusion center with a lot of redundant information when
discriminating H1 against H0. Equivalently, if the local decisions
are maximally dependent, once the fusion center has read a device,
new readings do not provide additional information that improves
the overall detection performance of the network.

5. CONCLUSIONS

In this paper we addressed the design of a distributed detection sys-
tem formed by a large number of devices and a data fusion cen-
ter. With no kind of cooperation and from its own observation each
device performs a local decision regarding the underlying binary
hypothesis testing problem. Afterwards, over an error free parallel
access channel each sensor transmits its decision to a fusion center
that makes a global decision, uFC , under the Neyman-Pearson for-
mulation. We considered that the devices are located on a rectangu-
lar lattice where the sensors belonging to a specific row or column
are equally spaced. Additionally, the local decisions are assumed
to be dependent under both hypothesis. In particular, given each
one of the two hypothesis the dependence among the local deci-

sions is modelled by means of a 2-D causal field where the rows
and columns are outcomes of the same first-order binary Markov
chain. Under an arbitrary physical model that links the physical
parameters of the network with the transition probabilities of the
aforementioned Markov chains, we firstly derived a closed-form er-
ror exponent for the Neyman-Pearson test performed at the fusion
center. Finally, after choosing a physical model for the transition
probabilities corresponding with the Markov chains present under
each of the two hypothesis, we perform several evaluations and an-
alytical studies in order to know how the error exponent behaves as
the dependence among the binary local quantizations vary.
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