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ABSTRACT
A brain-computer interface (BCI) provides the possibility to
translate brain neural activity patterns into control commands
without user’s movement. In recent years, there has been in-
creasing interest in using steady-state visual evoked potential
(SSVEP) in BCI systems. The SSVEP based BCI system re-
quires several simultaneously flickering light sources of dis-
tinct frequencies, enabling the user to interact by focusing on
one of the stimuli. However, the amplitude of the SSVEP
is not the same for different stimulation frequencies or for
different subjects. In order to find optimal stimulation fre-
quencies, stimuli are usually processed sequentially; this can
take several minutes. This paper introduces a novel multi-
target calibration method for SSVEP-based BCIs, which al-
lows significant shortening of the calibration procedure. This
approach was successfully evaluated in 5 neurologically in-
tact subjects, shorting the calibration time by four. No major
influence on the quality of calibration could be observed.

1. INTRODUCTION

BCI systems allow people to communicate through direct
measures of brain activity [1]. These devices may be the only
possible way of communication for severely disabled users,
such as persons with cerebral Palsy, after stroke, or injuries
to the brain or spinal cord. Recent studies have indicated an
increased interest in non-invasive BCI systems, which can
be based on various sensory modalities [8]. In non-invasive
BCIs, electroencephalography (EEG) is commonly utilized
because of its high time resolution, ease of acquisition, and
lower cost when compared to other brain activity monitoring
modalities. In recent years, there has been increasing interest
in using steady-state visual evoked potential (SSVEP) in BCI
systems; the SSVEP approach provides up to date the fastest
and most reliable communication paradigm for the imple-
mentation of a non-invasive BCI system [9, 11]. However,
many aspects of current system realizations need improve-
ment, specifically in relation to speed (in terms of informa-
tion transfer rate as well as time needed for performing a
single command), user variation and ease of use.

An SSVEP-based BCI system must reflect the user at-
tention to a fast oscillating stimulus. The stimuli are lights
flickering at different frequencies and their responses in the
EEG signals correspond to SSVEPs at the same frequen-
cies as the stimuli and their harmonics. The best responses
for these signals are obtained for stimulation frequencies be-
tween 5 and 20 Hz [7]. The amplitude that characterizes an
SSVEP response depends on the frequency, intensity and the
structure of the repetitive stimulus. Some studies have com-
pared the spectrum differences between a variety of stim-

uli sources, e.g. between light emitting diodes (LED) and
monitors [10, 12]. The amplitude of the SSVEP responses
evoked by LEDs are significantly larger than the evoked by
stimuli presented on a computer monitor. Current SSVEP
based BCIs use one-to-one correspondence between stimu-
lating frequency and the command, hence a large number of
choices such as in a virtual keyboard requires a large num-
ber of frequencies. Gao et al. observed that two flickering
targets with a difference in frequency of 0.2 Hz can be suc-
cessfully distinguished in the EEG signals, which allowed
them to develop an online SSVEP BCI system with 48 tar-
gets [3]. However, the amplitude of the SSVEP is not the
same for different stimulation frequencies and for different
subjects [6] (as seen in Fig. 1). Therefore, to obtain op-
timal subject parameters an additional calibration phase is
required [4]. During an extensive analysis of recently pub-
lished works we realized that ALL research groups perform
the training phase in order to select the best individual fre-
quencies (and of course to optimize the spatial filtering and
other parameters needed for real-time processing in the on-
line SSVEP-based BCI system) in sequential way, this chain
calibration usually takes several minutes.

Mukesh et al. suggested the so-called dual stimulation
technique in order to increase the number of BCI commands
by using a suitable combination of frequencies [5]. They
found that for some frequencies spectral peaks of the combi-
nation frequencies were predominant compared to individual
stimulating frequencies. This method increases the number
of selections by using a limited number of stimulating fre-
quencies in BCI. This idea did not find a broad application,
because this method did not cause the direct increase of the
accuracy of signal classification and furthermore, it is possi-
ble to produce any number of stimulating frequencies with
modern hardware.

Derived from this idea, we propose a novel multi-target
technique for the selection of individual subject-dependent
stimulating frequencies to be used in any online SSVEP-BCI
system. This method provides a significant shortening of the
calibration procedure. The aim of the present study is to in-
vestigate the feasibility of suitable combination of frequen-
cies for visual stimulation in order to significantly shorten the
duration of the training phase in SSVEP-based BCIs.

This paper is organized as follows: The second section
presents the experimental protocol used in the study. Two
methods to evaluate the effectiveness of the proposed calib-
ration method are presented. Results shows analyses con-
ducted in frequency and time domains and resulting frequen-
cies obtained for each subject. Discussion and conclusion are
presented in the final section.
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(b) Subject 5

Figure 1: Differences in frequency spectrum for Subjects 3 and 5. EEG signals were acquired during sequential visual
stimulation with 16 individual flickering frequencies ranged from 12.5 to 20 Hz (with a 0.5 Hz steps) at the PO4 electrode.
The SSVEP response can observed as peaks at each of the stimulating frequencies.

2. METHODS

2.1 Subjects

A total of 5 subjects participated in the study. Subjects’ mean
age was 26 years, range 22-29 with standard deviation 2.92.
None of the subjects had neurological or visual disorders,
other than refractive errors. Spectacles were worn when ap-
propriate. All subjects were used to a computer screen for
their daily work. Subjects did not receive any financial re-
ward for participating in this study.

2.2 Data acquisition

The experiments were carried out in a normal office room
of the Institute of Automation at the University of Bre-
men. This is different to the usual EEG recording condi-
tions, in which an electrically shielded room with low back-
ground noise and luminance is usually used. Subjects sat
in a comfortable chair. A LED stimulator shown in Fig. 2
was placed approximately 25 cm from the subject. EEG data
were recorded from the surface of the scalp via eight sin-
tered Ag/Ag-Cl EEG electrodes. They were placed on AFZ
for ground, right ear lobe was used for the reference elec-
trode and PZ ,PO3,PO4,OZ ,O9,O10 as the input electrodes
based on the international system of EEG measurement. The
standard abrasive electrolytic electrode gel was applied be-
tween the electrodes and the skin to bring impedances below
5 kΩ. An EEG amplifier g.USBamp (Guger Technologies,
Graz, Austria) was used for signal acquisition. The sampling
frequency was 128 Hz. During the EEG acquisition, an ana-
log bandpass filter between 2 and 30 Hz, and a notch filter
around 50 Hz (mains frequency in Europe) were applied di-
rectly in the amplifier.

LE
D
1

LE
D
2

LE
D
3

LE
D
4

Figure 2: LED stimulator. The four red LEDs (modules
HLMP-2685, size 10x20 mm each) with common luminance
of around 2.56 cd.

2.3 Experimental Protocol

Subjects were instructed to look at the LED stimulator while
EEG data were collected. The experiment consists of two
runs with a short resting time in between. During each run
the user was stimulated with 16 different frequencies (ranged
from 12.5 and 20 Hz with 0.5 Hz steps). In the first run, only
LED1 (see Fig. 2) was flickering with different stimulation
frequencies, each frequency was randomly selected. The sti-
mulation time was determined randomly and varied from 21
to 25 seconds. Between the stimulation of two different fre-
quencies, there were short breaks that varied from 5 to 7 sec-
onds. In the second run, the user was confronted with four
simultaneously flickering LEDs (LED1-LED4 in the Fig. 2)
presenting 4 stimulating frequencies at once.
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Figure 3: Differences in frequency spectrum (for Subjects 3 and 5) from EEG signals acquired during visual stimulation with
4 groups of 4 LEDs, each with flickering frequencies ranged from 12.5 to 20 Hz (with a 0.5 Hz steps) at the PO4 electrode.
The SSVEP response can be seen as the peaks at stimulating frequencies.

In order to avoid mutual influences between stimulating
frequencies, the following additional restrictions for each
group of four simultaneously flickering LEDs were applied
during the randomization of the 16 frequencies: fi 6= [ f j +
fk]/2, fi 6= 2 f j− fk, fi 6= 2 fk− f j. It is important to mention
that in the second part of the experiment subjects were in-
structed to focus their gaze at the middle of the LED’s array,
but attenting on all four LEDs. The stimulation times were
chosen in the same way as in the first part of the experiment.
The entire procedure took on average about 40 minutes per
subject including subject EEG preparation.

2.4 Evaluation methods
Classical two dimensional control that operates with SSVEP
requires five classes: Four classes are dedicated to the di-
rections (up, down, left and right) and one class for selec-
tion of actions. During the calibration process, the goal is
to determine the five stimulating frequencies that achieve
best SSVEP responses. In order to prove that the calibra-
tion procedure outputs the same five best frequencies with
the strongest SSVEP responses, the standard chain calibra-
tion and the novel calibration method with four flickering
LEDs at once were compared. We distinguish two ways for
estimating the calibration quality and to evaluate its impact:
The conventional fast Fourier transform (FFT) and the Mini-
mum Energy Combination (MEC) method [2].

2.4.1 Discrete Fourier Transform

Fourier analysis is a powerful tool in signal analysis that can
be applied to detect SSVEP peaks. The analysis signal is
the EEG signal recorded from the i-th electrode when visual
stimulation is applied yi(t). The Fourier theorem states that
any function in the time domain can be expressed in the fre-
quency domain as the sum of sinusoidal functions with diffe-
rent frequencies:

y(t) =
N

∑
j=1

An sin(2π fnt +Φn). (1)

The discrete Fourier transform of the signal yi(t) at elec-
trode i sampled at discrete times tn is given by:

F( fn) =
1
N

N

∑
n=1

y(tn)ε j2π fn . (2)

2.4.2 Minimum Energy Combination

To extract discriminant features, the signals from the i elec-
trodes need to be combined. This can be achieved by defining
a channel vector s of length Nt which is a linear combination
of the electrode signals, yi

s =
Ny

∑
i=1

wiyi = Y w, (3)

where w is a vector of weights [w1, . . . ,wNy ] associated with
the individual electrode signals. The aim of the channel s is
to enhance the information contained in the EEG while re-
ducing the nuisance signals. Several channels can be created
by using different sets of weights, depending on the nature of
the SSVEP signal and the noise. Equation (3) can be gener-
alized for Ns channels as

S = YW (4)

with the set of channels S = [s1, . . . ,sNs ] and the correspond-
ing weight matrix W = [w1, . . . ,wNs].

First, orthogonal projection is used to remove any poten-
tial SSVEP activity from the recorded signal,

Ỹ = Y −X(XT X)−1XTY . (5)

The remaining signal Ỹ contains approximately only noise,
artifacts and background activity.

In the next step the weight vector ŵ which minimizes the
energy of the signal Ỹ is found by optimizing

min
ŵ

∥∥Ỹ ŵ
∥∥2

= min
ŵ

ŵT Ỹ T Ỹ ŵ. (6)

Vector w will minimize the component of the noise and
nuisance signal in the corresponding channel signal (equa-
tion (3)). The weight matrix can be chosen based on the
eigenvalues in ascending order (λ1,λ2, . . . ) and the corre-
sponding eigenvectors (v1,v2, . . . )

W =

[
v1√
λ1

. . .
vNs√
λNs

]
. (7)

The total number of channels used, Ns, is selected by finding
the smallest value for Ns which satisfies

∑
Ns
i=1 λi

∑
Ny
j=1 λ j

> 0.1 (8)
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Figure 4: SNR distributions for two different stimuli presentations for Subject 4 (a) during visual stimulation with 16 individual
flickering frequencies ranged from 12.5 to 20 Hz (steps of 0.5 Hz) and (b) during stimulation in groups of 4 LEDs. The five
stimulating frequencies with the strongest SNRs are plotted with a thick line. SNR values were calculated on the basis of
the time segment length of 4 s every 100 ms using Minimum Energy Combination method as described above and six EEG
channels (PZ ,PO3,PO4,OZ ,O9,O10).

This can be interpreted as selecting the number of channels
in such a way as to discard as close to 90% of the nuisance
signal energy as possible [2].

The estimated SSVEP signal to noise ratio over all chan-
nels Ns and all corresponding harmonics Nh is given by

T̂ =
1

NsNh

Ns

∑
l=1

Nh

∑
k=1

P̂k,l

σ̂2
k,l
. (9)

Here, P̂k,l denotes the estimated SSVEP power at the kth har-
monic frequency in the channel signal sl ,

P̂k,l = ‖XT
k sl‖2 , (10)

and σ̂2
k,l is the corresponding estimated noise level which

represents the power in the kth harmonic frequency in the
channel signal sl if no SSVEP response were present. An
auto-regressive AR(p) model of order p = 4 is fitted to each
modified channel signal,

s̃l = Ỹ wl (11)

using a Levinson-Durbin recursion. The resulting model pa-
rameters and the estimated white noise variance driving the
auto-regressive process are then used to predict the noise
level at the kth harmonic SSVEP frequency.

Using the methodology outlined above, the estimated sig-
nal to noise ratio of the EEG signal acquired over a seg-
ment length Ts with respect to one of the stimulation frequen-
cies fi can be denoted as T̂ ( fi), i = 1 . . .N f . In the present
setup, only the first harmonic of the stimulating frequency
was taken into consideration, Nh = 2, and the time segment
length Ts of 4 s was used.

3. RESULTS

Results obtained from two calibration runs for five subjects
are summarized in Table 1. Selected frequencies are shown
when stimuli were presented in sequence order and for multi-
target stimulation (four LEDs flickering with the different
frequencies). Fourier Analysis were performed for single
frequencies and results are shown in column 1. For direct
comparison, column 2 shows results for Fourier analysis and
column 3 for Minimum Energy Combination when stimuli
are presented in groups of four frequencies. Fig. 1 shows the
results of two representative subjects obtained during chain
stimulation with 16 flickering frequencies. Fig. 1a shows re-
sults for subject 3 considered to be a good SSVEP perfor-
ming subject and Fig. 1b for subject 5 considered less perfor-
ming. Fig. 3 shows the results obtained for the same subjects
with stimulation groups of four stimulation frequencies. The
same data was analyzed with the Minimum Energy Combi-
nation algorithm to find the best five stimulation frequencies.
Fig. 4 presents the SNR distributions for subject 4: Fig. 4a
for individually presented stimuli and Fig. 4b for the stimu-
lation in groups of 4 LEDs.

4. DISCUSSION

Two calibration methods were compared: single LED and
multi-target group LED stimuli. For both methods, we com-
puted the frequency spectrum (FFT) of single EEG signal at
electrode PO4 (see section 2.4.1). The length of the time
window used for FFT-analysis was 21 seconds (offset of 1
s). From the results, it can be observed that for both calib-
ration methods (single and multi-target) the visual stimula-
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Table 1: Results over 5 subjects. Table presents five frequencies [Hz] with the largest SSVEP responses for individual stimu-
lation vs. stimuli presented in groups of 4 LEDs, bold marked values represent equal selected frequencies for FFT and SNR.

Subject Single LED FFT Group LED FFT Group LED SNR

1 14.5, 12.5, 20.0, 16.5, 17.0 12.5, 13.5, 20.0, 17.0, 19.5 12.5, 13.5, 14.0, 20.0, 16.0

2 15.5, 16.5, 20.0, 19.5, 17.0 15.5, 16.5, 19.5, 17.0, 17.5 15.5, 17.0, 17.5, 16.0, 19.5

3 13.0, 17.0, 16.5, 15.0, 18.0 16.5, 13.0, 14.5, 19.0, 18.0 17.0, 16.5, 13.0, 19.5, 19.0

4 15.0, 19.0, 17.5 18.0, 13.5 15.0, 19.0, 17.5, 13.5, 18.5 16.5, 17.5, 15.0, 19.0, 18.5

5 17.5, 14.0, 19.0, 20.0, 19.5 20.0, 19.5, 15.0, 19.0, 17.0 16.5, 17.5, 19.5, 18.0, 16.0

tion leads to an increase of the SSVEP response at the cor-
responding frequency (see Fig. 1 and 3). The spectral am-
plitude of the SSVEP response vary significantly between
the subjects and different stimulation frequencies. Based
on the maximal values, we chose five best frequencies for
all subjects as shown in Table 1. A high correlation of the
best frequencies determined by two calibration methods was
found. At least three of five frequencies encountered by two
calibration ways were the same. This approach allows us
to shorten the total duration of calibration time from 464
seconds (16× 23 + 16× 6 = 464, 16 frequencies, 23 sec-
onds is the mean duration of stimulation and 6 seconds is
the mean resting time) to 116 seconds (4×23+4×6 = 116,
four groups a four frequencies).

Another way to compare the two calibration approaches
is the calculation of SNR values using Minimum Energy
Combination method as explained in section 2.4.2. In
comparison to the FFT-analyses with window length of 21
seconds the SNR method returns the adequate outcomes
from data sets recorded during 9 seconds (offset of 1 s).
This brings an additional advantage in terms of the perfor-
mance of calibration. The criterion for the selection of five
best frequencies is based on the calculation of the integral
value of the SNR distribution over the time. In column
Group LED SNR (Table 1) the five best frequencies for each
subject are displayed. The SNR-based calibration provides
similar five best frequencies to the FFT-analysis based ca-
libration. For four subjects at least three of five frequencies
matched. Only for the subject 5, whose responses were very
low compared with other subjects, one frequency of five fre-
quencies matches over all methods.

5. CONCLUSION

In this paper a novel calibration method for SSVEP based
Brain-Computer Interfaces was presented. We have showed
that using multi-target stimulation, the calibration time is
decreased without reducing the quality of the SSVEP re-
sponses. The Minimum Energy Combination algorithm was
useful to determine frequency responses when stimuli are
presented simultaneously (the same procedure as during an
online BCI experiment).
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