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ABSTRACT 

We present a general approach to identifying time-variant 

colliding harmonics in pitched steady-state monophonic 

sound mixtures. Each sound is described by a linear-in-

parameter quasi-harmonic model which captures properly 

instantaneous time variations of the non-stochastic sound 

energy. The model parameters corresponding to colliding 

harmonics are estimated on the basis of multiple-solution 

cost function L
2
 minimization with regularization. The major 

advantage against the state-of-the art methods is that no 

additional information about the underlying sounds in the 

mixture is needed. A comparative study shows that the pro-

posed method performs significantly better than an existing 

algorithm for separation of monaural pitched sounds from a 

mixture. 

1. INTRODUCTION 

Single-channel separation of monophonic harmonic sound 

sources from a polyphonic mixture is proven to be a useful 

analysis tool for characterizing complex audio signals like 

music and co-channel speech. Some of the most prominent 

application areas include information retrieval, polyphonic 

music transcription and structured audio coding. 

In the past decade a number of approaches, which can 

generally be referred to as supervised and unsupervised, have 

been investigated. The supervised methods e.g. [1-3] are typ-

ically rooted in training individual source models on the basis 

of a large number of recordings. The unsupervised methods 

are more general and usually perform the separation by com-

bining computational auditory scene analysis cues with ei-

ther data-driven redundancy-reduction [4, 5] or parametric 

model-based inference [6-8]. The unsupervised methods of-

ten rely on the quasi-harmonic structure assumption for the 

underlying sound sources, provided that the corresponding 

fundamental frequencies (pitches) can be correctly estimated. 

In the best-case-scenario i.e. no frequency-domain overlap 

among the sources, those methods yield very good results 

with a minimal computational effort. 

In real-world polyphonic music signals, however, the 

pitches of the mixed sources often form consonant intervals, 

which correspond to frequency relationship given as small 

integer ratios, namely, an octave (2:1), a fifth (3:2), a forth 

(4:3) and a third (5:4). As a result, a large number of harmon-

ics gets clustered in a very small frequency bandwidth, thus 

reducing significantly the identifiability of the individual 

sources. Considerable efforts were made to address the prob-

lem of colliding harmonics in different ways, which include 

spectral filtering [6], time-frequency smoothness constraints 

[7] and common amplitude modulation from human auditory 

perception [8]. The common factor shared by these ap-

proaches is the use of single source information estimated 

from non-colliding harmonics and prior assumptions about 

sound harmonic structure. While the identification of the 

non-colliding harmonics is relatively easy task to perform, 

the prior assumptions of quasi-stationarity [6], spectral 

smoothness [7] or phase-locked harmonics [8] are often not 

justified for retrieving colliding harmonics in real-world mu-

sic signals. 

The approach we present herein combines single-source 

time-variant harmonic modeling and regularized least-

squares for model parameter estimation. It can be seen as a 

specific extension of the harmonic model [9] oriented to 

sound source separation with an arbitrary number of collid-

ing harmonics. Amplitude and frequency time variations of 

each source are efficiently captured by a single continuous 

polynomial which modulates a set of harmonically related 

sines and cosines. The model parameters for each source are 

estimated by minimizing a multi-objective L
2
 cost function 

consisting of the reconstruction error term (all harmonics) 

and collision term (colliding harmonics). As the model is 

linear-in-parameters, the minimizer is a regularized least-

squares (approximate) solution of the reconstruction term.  

The present method brings out novelties in comparison 

to [6-8], namely: 1) simultaneous modeling of all the har-

monics in the mixture, 2) time variations in all the harmonics 

are properly captured and 3) no information from the non-

colliding harmonics are needed. 

2. THE SIGNAL MODEL 

A discrete steady-state sound mixture signal can be efficient-

ly represented as a superposition of a number of monophonic 

harmonic sources hr(n), r = 1, 2, …, R and additive noise 

e(n): 
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Each source is typically modeled through a set of non-

stationary harmonics (partials) while the noise is represented 

as a Gaussian process with time-varying spectral shape. 

 

2.1. The time-variant harmonic model 

 

Among a number of monophonic harmonic signal models 

that have been proposed in the recent years, we choose the 

one described in [9]. It has been proven to provide a compact 

description of amplitude and frequency time-variations in the 

analysis window by means of just a small number of parame-

ters. Starting from the expression of a single quasi-harmonic 

source hr(n) of I components: 
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the corresponding time-variant harmonic model is derived by 

using the assumptions of continuity and slow-variation: 

 

1) Continuity assumption: ( ) ( )
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2) Slow-variation assumption: the following approximations 

are applicable: 
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By combining (1) - (4) and after some mathematics as shown 

in [9], we obtain the time-variant harmonic model for a 

steady-state sound mixture of R sources: 
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The polynomials ( )i
rα and ( )i

rβ , whose internal structure is 

herein omitted for the sake of clarity, capture the non-

stationarities in RI harmonics of the model (5). The relation-

ship among harmonics belonging to different sources is one 

of the key issues for sound source separation and will be 

tackled in the following sections. 

3. THE SIGNAL MODEL ESTIMATION 

In the present section we discuss the estimation problem in 

relation to harmonic classification and propose a method to 

successfully separate colliding and non-colliding harmonics 

from a harmonic mixture. 

 

3.1. The linear system 

 

The model (5) evaluated at N discrete time points can be 

represented as a system of linear equations of the following 

matrix form: 

εΦθ +=s .                                  (6) 

 

The vector ε comprises both modeling and measurement 

errors, the vector s represents the measurement data, the vec-

tor θ contains 2RI(P+1) model parameters:  
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and the N-entry matrix Φ provides the model description:  
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where m = 1, 2, …, 2RI(P+1). For the sake of the present 

application, it is assumed that the mean fundamental fre-

quencies f0r, r = 1, 2, …, R are estimated before hand by 

means of a multipitch estimation algorithm like [10, 11]. Fur-

ther discussion on multipitch estimation, however, is omitted 

as it is out of scope of the paper. 

 

3.2. The ill-posedness of the system 

 

In audio signal modeling the number of model parameters is 

generally smaller than the number of measurement points in 

the analysis window. Accordingly, the system (6) is inconsis-

tent and with no exact solution. However, if the system has 

full-column rank, an approximate solution can always be 

found by computing the residual that minimizes some norm 

(typically L
2
 norm): 

 

2

2
min Φθs −

θ
,   with    sΦθ

+=ˆ ,                (9) 

 

where Φ
+
 is the Moore-Penrose pseudoinverse of Φ. If there 

is no significant frequency-domain overlap between the un-

derlying sources (only non-colliding harmonics), linear least-

squares (LS) can provide a stable solution LS
θ̂  to the system, 

as it does for a monophonic single-source scenario. As shown 

in [9] the resulting approximation error ε in (6) is close to the 
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measurement error e in (1), thus rendering the modeling er-

rors almost negligible. Such system is called well-posed sys-

tem. 

In presence of colliding harmonics the system (6) under-

goes certain modifications which attain its well-posedness. 

The major change concerns the model matrix Φ, where each 

column is a sine/cosine multiplied by a corresponding poly-

nomial term (8). If the input includes colliding harmonics as 

well, the corresponding columns in Φ become highly corre-

lated, thus yielding the matrix condition number (the largest 

singular value to the smallest one) extremely large. In addi-

tion, the singular values of the matrix gradually decay to ze-

ro, which means that there is no obvious way to filter out the 

smallest singular values and turn the problem into a nearly-

consistent rank-deficient one [12]. If the input signal is noise-

free, it would still be possible to achieve a physically mea-

ningful solution in spite of the ill-posedness of the problem. 

In real-world signals, however, the stochastic component acts 

as a perturbation to the ill-posed system, providing highly 

instable LS solution which is usually far from the unper-

turbed LS solution.  

 

3.3. The cost function and regularized LS 

 

In order to keep the problem less sensitive to perturbations, 

we have to mitigate the ill-conditioning of the model matrix 

Φ. This is usually done by adding a regularization term pro-

portional to the desired solution norm in the system minimi-

zation cost function. As we are dealing with linear systems 

(6), a natural choice is L
2
-norm regularization (also known as 

Tikhonov regularization) which computes a solution of the 

following cost function: 
 

{ } ℜ∈≥+− λλλ
θ
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2

2

22
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The first term in the cost function is known as the residual 

norm while the second term is referred to as the solution 

norm. It is an extension of (9) with the objective to keep the 

system solution within a certain range of values.    

Minimizing (10) with respect to θ we obtain the regula-

rized LS solution: 
 

( ) sΦLLΦΦsΦΦθ
T1T2TT1RLSˆ −− +== λλ .       (11) 

 

The key issue in (11) is the presence of the additional term 

λL
T
L in the matrix Φλ. With an appropriate choice of the 

matrix L and scalar λ the conditioning of the matrix Φ
T
Φ can 

be substantially improved. Accordingly, this kind of regulari-

zation alleviates the perturbations in the solution and pre-

serves desired features of the estimated solution.  

 

3.4. The choice of regularization parameters 

 

The parameters L and λ have each a particular roll in regula-

rization of the solution norm. The matrix L should reflect an 

a priori knowledge (if available) about the solution. For ex-

ample, if some information about the smoothness of the true 

solution is known, then L is typically constructed as a dis-

crete derivative operator. In case that nothing is known befo-

rehand about the true solution, L is often chosen as a unitary 

matrix. 

From the previous subsections it is clear that ill-

posedness of the linear system comes from the colliding 

harmonics. Therefore, the regularization in (10) should con-

cern only the colliding harmonics in the mixture. Once the 

initial colliding/non-colliding classification has been carried 

out, we define L as follows: 
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where “◦” represents the Hadamard entrywise vector product 

and M is a binary masking vector defined as: 
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Such choice of matrix L allows for simultaneous estimating 

of all harmonics in the mixture. Furthermore, it operates ex-

clusively on the smallest singular values of Φ, thus guaran-

teeing well-posedness of Φλ. 

The parameter λ controls the degree of regularization 

and is highly application-dependent. Too large values of λ 

yield an over-determined solution (the solution is strongly 

distorted) while λ too small does not achieve to control the 

perturbation sensitivity (under-determined solution). The 

determination of the optimal value of λ is a very difficult 

task, as it depends on the properties of θ, Φ and the perturba-

tion variance. Some methods like L-curve, Generalized 

Cross-Validation (GCV) and the Discrepancy principle tend 

to produce undersmoothed estimates (especially in high-

noise environment) and are usually time-consuming in the 

sense of computation effort.  

In the context of the present method, we seek a simple 

approach to choosing an approximate λ that would keep the 

system computational simplicity and at the same time pro-

vide a close-to-optimal solution. We have carried out an em-

pirical study regarding two colliding harmonics, where we 

have calculated the expected value of the norm error between 

the correct model parameters θ and its regularized estimate 

( )λRLS
θ  as a function of both harmonic frequency separation   

and λ. For a fixed Gaussian perturbation with standard devia-

tion 0.1 (SNR = 15 dB) and harmonic separation expressed 

in terms of the analysis resolution 1/N (N is the size of the 

analysis window) the 2D error norm is plotted in Figure 1. 

The intensive bright area to the left in the figure (for λ ap-

proximately up to 0.2) corresponds to a large norm which is 

due to a very strong estimate variance. To the right, the norm 

increases more smoothly because it is dominated by the es-

timate bias. The dark area in the upper-left half represents the 

values of the norm which are situated in the neighborhood of 

the minimum. Such error norm constellation is preserved for 

the SNR as small as 5 dB approximately; further decrease in 

SNR implies a sharper error norm minimum and consequent-

ly a more selective choice of λ. Nevertheless, except for ex-

tremely small harmonic separation below 0.1/N and large 
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Figure 1 – Expected value of the error norm in decibels as a function 

of λ and harmonic separation (given as a fraction of 1/N).  
 

 

noise variance (SNR < 5 dB), we can always choose λ ∈ 

[0.5, 0.7].   

However, the closeness of the estimated model parame-

ters (7) to the correct ones with such λ must always be inter-

preted in the context of the desired application. If a user 

wants to characterize a sound source by a further analysis of 

the estimated parameters, then an additional research on sen-

sitivity of sound properties against the error norm must be 

carried out. However, if the goal of the regularization is to 

separate the source waveforms from a mixture, then this 

choice of λ it will achieve a very good approximation quality, 

as discussed in the following section. 

4. EXPERIMENTAL RESULTS 

A comparative study, followed by an illustrative real-world 

example, is presented in order to discuss the performance of 

the proposed constrained time-variant harmonic modeling. 

Throughout this section we have used λ = 0.6. 

For the comparative study we use as reference methods 

the Spectral filtering method [6] and the Harmonic modeling 

method [9]. The Spectral filtering method estimates a source 

from a mixture by analyzing the harmonic spectral peaks in 

the signal’s STFT. For each set of colliding peaks a small-

bandwidth spectral filter (type B) [6] is applied in order to 

split the signal’s energy into its constituents. The Harmonic 

modeling method, which models each harmonic from the 

mixture independently of the rest according to Section 2.1, 

was not specifically designed to deal with colliding harmon-

ics; nevertheless, it provides a clear picture of the signal 

model performance with and without regularization. 

The test signal consists of two harmonic sources whose 

instantaneous frequencies and amplitudes vary according to 

sinusoidal quasi-vibrato laws plus Gaussian noise r(n):  
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Figure 2 – Mean Signal-to-residual ratio for the methods. 

 

 

The fundamental frequencies f01 = 440 Hz and f02 = 660 Hz 

have been chosen in such a way to emulate the perfect fifth 

frequency interval, which in turn yields almost 40% of all 

harmonics to be collided. In addition, γr and δr assure arbi-

trary shape spectral envelopes for the underlying sources, in 

order to get as closer as possible to the real-world scenarios. 

The modulation denormalized frequencies are fAM fs = 22 Hz 

and fFM fs = 6 Hz, while the modulation amplitudes are AAM = 

AFM = 0.2. The analysis window length is 20 ms with the 

sampling frequency fs = 44.1 kHz. 

In order to measure the performance of the methods in a 

noisy environment, we vary the contribution of r(n) through 

the SNR ∈ [0, 30] dB in steps of 3 dB and for each SNR we 

calculate the Mean Signal-to-Residual Ratio (MSRR) over 

500 realizations: 
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where str(n) and ŝtr(n) are the original and approximated 

sources respectively. The resulting curves shown in Figure 2 

follow a general ascending trend according to the increments 

in SNR. The proposed method clearly outperforms the refer-

ence methods in the whole analysis range.  The Harmonic 

modeling is the worst due to the ill-posedness of the model in 

the neighborhood of the colliding harmonics. The Spectral 

filtering method achieves much better results because it 

processes the colliding harmonics in a non-parametric way. 

However, it remains around 5-8 dB below the proposed me-

thod. This is due to the initial assumptions about quasi-

stationarity and spectral continuity of the underlying sources.  

We illustrate the behavior of the proposed method by 

processing a mixture of two real-world monophonic sources 

(flute and trumpet) taken from the Iowa University music 

database [13]. While the flute features a quasi-stationary sig-

nal at 440 Hz, the trumpet performs a vibrato technique 

around 660 Hz (perfect fifth). In Figure 3 we observe a 

strong resemblance between the original and approximation 

spectrograms (plotted according to the same gray scale) ex-

cept for a slight difference around 0.25 normalized time axis. 
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Figure 3 – First row: flute signal, its spectrogram, approximated spectrogram and signal-to-residual ratio; 

                           Second row: trumpet signal, its spectrogram, approximated spectrogram and signal-to-residual ratio. 

 

 

A close examination of the harmonic frequencies for this 

specific time instant reveals that for three consecutive analy-

sis frames the colliding harmonics are separated less than 1 

Hz i.e. 0.02/N. According to Figure 1 we expect a certain 

increment in error norm and this is indeed reflected in the 

SRR reduction to 10 dB in Figure 3. Elsewhere, the SRR 

varies between 15-30 dB thus providing a very good source 

separation. Informal listening to a separated source reveals 

no audible residual from the other source and vice versa. 

5. CONCLUSIONS 

We have shown that constrained time-variant harmonic 

modeling is an appropriate tool for separating colliding har-

monics in the context of monaural pitched sounds separa-

tion. With a simple choice of regularization parameters the 

proposed method can successfully identify colliding har-

monics separated more than 5 % of the analysis resolution 

with SRR of about 20 dB. In addition, it outperforms the 

Spectral filtering method by 5-8 dB depending on the SNR. 

Furthermore, the system model is linear-in-parameters, 

which assures high computational efficiency and implemen-

tation simplicity.  
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