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ABSTRACT

This paper solves the problem of parameter estimation for
the general contourlet pansharpening method using Bayesian
inference. In the general contourlet panshapening method,
a set of parameters that control the contribution of each
band of the multispectral image, the panchromatic image
and the prior knowledge on the image need to be set. The
proposed method takes into account the relationship between
contourlet coefficients to incorporate prior knowledge on the
unknown parameters in the form of hyperprior distributions.
This method is able to estimate all the unknown parameters
together with the high resolution multispectral image in a
fully automatic way. The experimental results show that the
proposed method not only enhances the spatial resolution
of the pansharpened image, but also preserves the spectral
information of the original multispectral image.

1. INTRODUCTION

Pansharpening is a pixel based technique that fuses a low
resolution (LR) multispectral (MS) image and a high res-
olution (HR) panchromatic (PAN) image to provide a HR
MS image with the spatial resolution and quality of PAN
image and the spectral resolution of the MS image. In
the literature, this task has been addressed from different
points of view (see [1] for a complete review). In recent
years, multiresolution-based methods, which includes Lapla-
cian pyramid, wavelet-based methods and contourlet-based
methods, are becoming popular. Non-subsampled contourlet
transform (NSCT) [2] is an usual choice in fusion methods,
since it provides a complete shift-invariant and multiscale
representation, with a fast implementation. Fusion based on
NSCT can use several methods for the injection of the image
details. Recently, we proposed a general NSCT pansharpen-
ing method using Bayesian inference [3] that comprises, as
particular cases of injection methods, substitution, addition
and some complex mathematical models, but needed of a
big amount of parameters to be set. In this paper, we ex-
tend the work in [3] to automatically estimate the unknown
parameters, within the hierarchical Bayesian framework.

This paper is organized as follows. In section 2, the
used notation is introduced and the general algorithm for
NSCT pansharpening, using different injection methods, is
described and the relationship between the NSCT coeffi-
cients is studied. Section 3 explains the Bayesian modeling
and section 4 presents the inference of the high resolution MS
image and the estimation of the parameters. Experimental
results and comparison with other methods are presented
in section 5 for synthetic and SPOT5 images and, finally,
section 6 concludes the paper.

This work has been supported by the Consejeŕıa de Inno-
vación, Ciencia y Empresa of the Junta de Andalućıa under con-
tract P07-TIC-02698.

2. GENERAL PANSHARPENING
ALGORITHM AND BAYESIAN FORMULATION

Contourlet based pansharpening algorithms start with
the observed LR MS image, Y , with B bands, Yb, b =
1, . . . , B, each of size P = M × N pixels, which provides
low spatial but high spectral resolution, and the PAN im-
age, x, of size p = m × n, with M < m and N < n, a high
spatial resolution image which contains reflectance data in a
single band that covers a wide area of the spectrum. Based
on those observations, contourlet based pansharpening al-
gorithms find an estimation of y, the HR MS image, with
B bands, yb, b = 1, . . . , B, each of size p = m × n pixels.
Contourlet pansharpening methods are based on the ability
of the NSCT transform for obtaining the high frequencies
image details at different scales and different directions to
extract the detail information from the PAN image for in-
jecting them into the MS image. The main drawback of
NSCT-based pansharpening is the spectral distortion that it
may produce. In general, the pansharpening algorithm in
Algorithm 1 can be used to obtain an estimation of y, ŷ,
from x and Y .

Algorithm 1 NSCT pansharpening algorithm of x and {Yb}
into {ŷb}

1. Upsample each band of the MS image, Yb, to the size of
the PAN, x, and register them obtaining sb, b = 1, . . . , B.
2. Apply NSCT decomposition on the PAN image x and
registered MS image {sb},

x = xr +
L∑
l=1

D∑
d=1

xld, (1)

sb = srb +

L∑
l=1

D∑
d=1

sldb , b = 1, . . . , B, (2)

where the superscript r denotes the residual (low pass fil-
tered version) NSCT coefficients band and the superscript
ld refers to the detail bands, with l = 1, . . . , L, represent-
ing the scale and d = 1, . . . , D, representing the direction
for each coefficient band.
3. Merge the details of PAN {xld} and MS {sldb } images
getting {ŷldb }, keeping the residual image unchanged,

ŷldb = aldxld + bldsldb , (3)

ŷrb = srb . (4)

4. Apply the inverse NSCT to merge the MS band coeffi-
cients {ŷrb}, {ŷldb }, getting {ŷb},

ŷb = ŷrb +

L∑
l=1

D∑
d=1

ŷldb , b = 1, . . . , B. (5)
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Figure 1: NSCT coefficient relationships.

(a) (b)

Figure 2: Conditional distribution of a finest subband of
the first band of synthetic image, conditioned on (a) parent
p(X|PX) and (b) neighbor p(X|NX)

Note that for bld = 0, we get the substitution model [4],
and for ald = bld = 1, ∀l = 1, . . . , L and d = 1, . . . , D we
have the additive one [5], while using different ald and bld

values we will get different weighted models proposed in the
literature. In [3] we proposed to modify the merging strat-
egy in step 3 of Algorithm 1 by using Bayesian inference as
a mathematical way to estimate the details coefficients of
the HRMS image from those of the PAN and MS images.
In this paper we extend the formulation in [3] to deal with
the problem of parameter estimation. Using the hierarchical
Bayesian paradigm we include information on the unknown
parameters in the form of hyperprior distributions and esti-
mate the unknown parameters together with the high reso-
lution multispectral image. The parameters incorporated in
our model are estimated at each level of decomposition and
direction for each band, providing a sound way to control the
noise, preventing color bleeding and generalizing all previous
models.

Before going into the formulation of the problem let us
study the characteristics of the NSCT coefficients. These
characteristics for the subsampled case have been studied
in [6], they found three relationships in contourlet coeffi-
cients, which are shown in Figure 1. The reference coeffi-
cient has eight neighbors (NX) in the same subband, parent
(PX) at the same spatial location in the immediately coarser
scale and cousins (CX) at the same scale and spatial location
but in different directional subbands. Following [6], we stud-
ied the conditional distributions of contourlet coefficients,
conditioned on their parents, neighbors and cousins, in or-
der to know the relationship between these coefficients for
the NSCT. Figure 2 shows the conditional distributions for
the parents and neighbors. The distribution for the cousins
is not shown due to space constraints but is similar to the
other two. We notice that all of these conditional distribu-
tions exhibit a ”bow-tie” shape. Therefore, we conclude that
contourlet coefficients of natural images are approximately
uncorrelated yet dependent on each other. These dependen-
cies, however are local. This means that we can estimate
each band of the NSCT coefficients independently but we
should take into account the relation between the bands.
We are going to relate the different bands through the value
of the parameters.

In this paper we are going to relate the HR MS image
and the upsampled MS image following the model in [3].

Figure 3: Marginal distribution of the difference between
neighbor coefficients and the distribution of TV prior.

Starting from modeling the relation between yb and sb, as

sb = yb + nb, (6)

with nb being the capture noise assumed to be Gaussian with
zero mean and covariance matrix σ2

bI. Applying the NSCT
to both sides of Eq. (6) and since the NSCT decomposition
is a tight frame, we can write

srb +
L∑
l=1

D∑
d=1

sldb = yrb + nrb +
L∑
l=1

D∑
d=1

yldb + nldb . (7)

Assuming that the noise is separable, that is, it decomposes
in the same way as the image does, and therefore low fre-
quencies of the noise affect only to the low frequencies of the
MS band, and the high frequencies in each direction affect
only to their corresponding high frequencies in each direc-
tion, we can write that

sldb = yldb + nldb , for all l = 1...L, d = 1...D. (8)

We are going to approximate the noise of the detail
bands, nldb , by a Gaussian distribution with zero mean and
covariance matrix (βldb )−1I, with βldb the inverse of the un-
known noise variance of the detail band at level l and direc-
tion d of the MS band b.

Since the PAN image contains the details of the high
resolution MS image but lacks of its spectral information,
the relationship between the HRMS band coefficients and
the PAN image could be written as

xld = yldb + nldx , (9)

where nldx is the noise of the coefficients bands at each NSCT
decomposition level, l, and direction, d, for PAN image, that
it is approximated by a Gaussian distribution with zero mean
and covariance matrix (γldb )−1I. Note that, with this mod-
eling, we have decoupled each one of the bands of the con-
tourlet transform and, since they are uncorrelated, we can
do the estimation of each band independently of the other
bands.

3. BAYESIAN MODELING

When modeling the coefficient bands into the hierarchi-
cal Bayesian framework we have two stages. In the first
stage, knowledge about the structural form of the noise co-
efficients and the structural behavior of the HR MS im-
age coefficients is used in forming p(sldb , x

ld|yldb ,Ωldb ) and
p(yldb |Ωldb ), respectively. These noise and image models
depend on the unknown parameters Ωldb that need to be
estimated. In the second stage a hyperprior on the pa-
rameters is defined, thus allowing the incorporation of in-
formation about these hyperparameters into the process.
Thus, according to Bayesian paradigm, we can define the
joint distribution on the observation, hyper-parameters,
and HR MS coefficient bands as, p(Ωldb , y

ld
b , x

ld, sldb ) =
p(Ωldb )p(yldb |Ωldb )p(sldb |yldb ,Ωldb )p(xld|yldb ,Ωldb ), and inference is
based on p(Ωldb , y

ld
b |sldb , xld). From the observation model of
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the MS and PAN image in Eqs. (8) and (9) respectively, we
have the following probability distributions

p(sldb |yldb ) ∝ (βldb )p/2 exp

{
−1

2
βldb

∥∥∥sldb − yldb ∥∥∥2
}
, (10)

p(xld|yldb ) ∝ (γldb )p/2 exp

{
−1

2
γldb

∥∥∥xld − yldb ∥∥∥2
}
. (11)

Following [3,7], we choose a prior model based on the Total
Variation (TV) for the HR MS image, y, coefficient bands
given by

p(yldb |αldb ) ∝ (αldb )p/2 exp
{
−αldb TV (yldb )

}
, (12)

with TV (yldb ) =
∑p
i=1

√
(∆h

i (yldb ))2 + (∆v
i (yldb ))2 where

∆h
i (yldb ) and ∆v

i (yldb ) represent the horizontal and vertical
first order differences at pixel i, respectively, and αldb is the
model parameter of the MS band b coefficients at level l and
direction d. The idea behind this model is to consider the
image as a set of relatively smooth objects or regions sepa-
rated by strong edges, such as the coefficients of the NSCT.
As can be observed in Figure 3, the TV prior almost per-
fectly fits the distribution of the NSCT coefficients for the
details bands.

In the second stage of the hierarchical Bayesian frame-
work we define the distribution on the parameters. To model
the hyperparameters we use a gamma distributions,

p(w|aw, cw) = Γ(w|aw, cw), (13)

where w > 0, w ∈ Ωldb = (αldb , β
ld
b , γ

ld
b ) denotes a hyperpa-

rameter, and aw > 0 and cw > 0 are, respectively, the shape
and the inverse scale parameters of the distribution.

Finally, combining the first and second stage of the prob-
lem modeling we have the global distribution,

p(Ωldb , y
ld
b , x

ld, sldb ) = p(αldb )p(βldb )p(γldb )p(yldb |αldb )

p(sldb |yldb , βldb )p(xld|yldb , γldb ), (14)

where p(yldb |αldb ), p(sldb |yldb , βldb )) and p(xld|yldb , γldb ) are given
in Eqs. (12), (10), and (11), respectively.

4. BAYESIAN INFERENCE

For our selection of hyperparameters in the previ-
ous section, the set of all unknowns is (Ωldb , y

ld
b ) =

(αldb , β
ld
b , γ

ld
b , y

ld
b ). The Bayesian paradigm dictates that in-

ference on (Ωldb , y
ld
b ) should be based on p(Ωldb , y

ld
b |sldb , xld) =

p(Ωldb , y
ld
b , s

ld
b , x

ld)/p(sldb , x
ld). Since p(sldb , x

ld) cannot be cal-
culated analytically, then p(Ωldb , y

ld
b |sldb , xld) can not be found

in closed form, so, we apply the variational methodology to
approximate the posterior distribution by another distribu-
tion, q(Ωldb , y

ld
b ), that minimizes the Kullback-Leibler(KL)

divergence, defined as

CKL(q(Ωldb , y
ld
b )||p(Ωldb , yldb |sldb , xld))

=

∫ ∫
q(Ωldb , y

ld
b )log

(
q(Ωldb , y

ld
b )

p(Ωldb , y
ld
b |sldb , xld)

)
dΩldb dy

ld
b , (15)

which is always non negative and equal to zero only when
q(Ωldb , y

ld
b ) = p(Ωldb , y

ld
b |sldb , xld).

We choose to approximate the posterior distribu-
tion p(Ωldb , y

ld
b |sldb , xld) by the distribution q(Ωldb , y

ld
b ) =

q(Ωldb )q(yldb ), where q(yldb ) and q(Ωldb ) denote distributions
on yldb and Ωldb , respectively. Due to the form of the TV
prior, the above integral cannot be directly evaluated so, fol-
lowing [3, 7], we approximate it by using the Majorization-
Minimization approach [8]. Thus, the TV prior in Eq. (12)
is majorized by the functional,

M(αldb , y
ld
b , u

ld
b )=c.(αb

ld)p/2

exp

[
−αldb

p∑
i=1

(∆h
i (yldb ))2+(∆v

i (yldb ))2 + (uldb )(i)

2
√

(uldb )(i)

]
, (16)

where uldb is a p−dimensional vector, uldb ∈ (R+)p, whose
components (uldb )(i), i = 1, ..., p, are quantities that need to
be computed and have an intuitive interpretation related to
the unknown images yldb . Comparing Eq. (16) with Eq. (12),
we obtain

p(yldb , α
ld
b ) ≥ c.M(αldb , y

ld
b , u

ld
b ).

This leads to the following lower bound for the joint proba-
bility distribution

p(Ωldb , y
ld
b , s

ld
b , x

ld) ≥ c.p(Ωldb )M(αldb , y
ld
b , u

ld
b )p(sldb |βldb , yldb )

× p(xld|γldb , yldb ) = F (Ωldb , y
ld
b , s

ld
b , x

ld, uldb ). (17)

Hence, a sequence can be obtained of ever decreasing upper
bounds for the KL divergence as

CKL(q(Ωldb , y
ld
b )||p(Ωldb , yldb |sldb , xld))

≤CKL(q(Ωldb ).q(yldb )||F (Ωldb , y
ld
b , s

ld
b , x

ld, (uldb )k)). (18)

The following algorithm which extends the one presented
in [3] to deal with parameter estimation, can be used for
calculating the approximating posteriors q(Ωldb ) and q(yldb ).

Algorithm 2 Posterior parameter and image distribu-
tions estimation in TV reconstruction using q(Ωldb , y

ld
b ) =

q(Ωldb )q(yldb )

Given u1 ∈ (R+)p and q1(Ωldb ), an initial estimate of the
distribution q(Ωldb ),
For k = 1, 2, ..., until a stopping criterion is met.

1. Find qk(yldb )= arg min
q(yld

b
)

CKL(q
k(Ωldb )q(yldb )||F (Ωldb ,y

ld
b ,s

ld
b ,x

ld,(uldb )k)) (19)

2. Find (uldb )k+1 = arg min
uld
b

CKL(q
k(Ωldb )qk(yldb )||F (Ωldb ,y

ld
b ,s

ld
b ,x

ld,uldb )) (20)

3. Find qk+1(Ωldb ) = arg min
q(Ωld

b
)

CKL(q(Ω
ld
b )qk+1(yldb )||F (Ωldb ,y

ld
b ,s

ld
b ,x

ld,(uldb )k+1)) (21)

Set q(Ωldb ) = limk→∞ q
k(Ωldb ), q(yldb ) = limk→∞ q

k(yldb ).

In Eq. (19), we obtain for qk(yldb ), the p-dimensional
Gaussian distribution qk(yldb ) = N (yldb |Ek[yldb ], covk[yldb ]),
with

Ek[yldb ] = covk[yldb ]
[
βldb s

ld
b + γldxld

]
, (22)

covk[yldb ] =
[
αldb ς(u

ld
b )k + βldb Ip + γldb Ip

]−1

, (23)

and ς(uldb )k = (∆h)tW (uldb )k(∆h) + (∆v)tW (uldb )k(∆v)
where W ((uldb )k) is an p × p diagonal matrix of the form

W (uldb )k = diag

((
(uldb )k(i)

)− 1
2

)
, (24)

and ∆h and ∆v represent the p× p convolution matrices as-
sociated to the first order horizontal and vertical differences,
respectively. When an estimation ŷldb of the band coefficients
is needed in step 3 of Algorithm 1, the mean of the distribu-
tion q(yldb , E[yldb ], is selected.

To calculate (uldb )k+1 from Eq. (20), we obtain
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Measure Band NSCT [5] SR [7] Proposed
COR b1 0.91 0.84 0.99

b2 0.91 0.98 0.99
b3 0.90 0.62 0.98

SSIM b1 0.79 0.90 0.97
b2 0.81 0.94 0.97
b3 0.81 0.85 0.96

PSNR b1 26.75 32.68 38.17
b2 27.17 35.50 39.51
b3 27.65 30.15 36.93

ERGAS - 5.76 3.12 1.61

Table 1: Synthetic Image Quantative Results

(uldb )k+1(i) = Eqk(yld
b

)

[
(∆h

i (yldb ))2 + (∆v
i (yldb ))2

]
, i = 1, · · · , p.

Once we know qk(yldb ) and (uldb )k+1, the next step is to calcu-
late the distributions on the hyperparameters from Eq. (21).
We first note that

qk+1(Ωldb ) = qk+1(αldb )qk+1(βldb )qk+1(γldb )

where q(ω) = Γ(ω|āω, c̄ω) which produces

(Ek+1[αldb ])−1 =
λαld

b

αldb
+ (1− λαld

b
)

×2

p

p∑
i=1

[(
∆h
i

(
Ek[yldb ]

))2

+
(

∆v
i

(
Ek[yldb ]

))2

+
1

p
tr
[
(covk[yldb ])−1×((∆h)t(∆h)+(∆v)t(∆v))

]] 1
2

(25)

(Ek+1[βldb ])−1 =
λβld

b

βldb
+ (1− λβld

b
)∥∥sldb − Eqk(y)[y

ld
b ]
∥∥2

+tr
(
(covk[yldb ])−1

)
p

, (26)

(Ek+1[γldb ])−1 =
λγld

b

γldb
+ (1− λγld

b
)∥∥xld − Eqk(y)[y

ld
b ]
∥∥2

+tr
(
(covk[yldb ])−1

)
p

, (27)

where ω = āω/c̄ω is the mean of the prior distribution
on the parameter ω and λω = āω/(āω + p/2), with ω ∈{
αldb , β

ld
b , γ

ld
b

}
. Eqs. (25)-(27) indicate that the inverse of

the means of the parameters can be expressed as convex
combinations of their prior values and their maximum like-
lihood (ML) estimates and that λω, taking values in the
interval [0, 1), can be understood as the confidence on the
inverse of the mean of the prior distribution on the parame-
ters. So when λω are equal to zero, no confidence is placed
on the given values of the hyper-parameters and ML esti-
mates are used, making the observations fully responsible of
the parameters estimation, while when they are asymptoti-
cally equal to one, the prior knowledge of the mean is fully
enforced (i.e., no estimation of the hyper-parameters is per-
formed). Since, as already said, the bands are related, we
are going to study the relationships between the coefficients
and use this relationships as prior values for the mean of
the hyperparameters, with a high confidence, as will be de-
tailed in the next section. Since the calculation of covk[yldb ]
is very intense, we chose to approximate, only for param-
eter estimation, W (uldb )k in Eq. (24) by diagonal matrix,

W (uldb )k = 1/p
∑p
i=1 1/

√
(uldb )k(i)× Ip.

5. EXPERIMENTAL RESULTS

In this section, the proposed NSCT-based pansharpening
method using the Bayesian inference is tested. Experiments
on a synthetic color image and a real SPOT5 image are
conducted to test the proposed method. The observations
of the synthetic multispectral are obtained from the color
image, displayed in Fig. 4(a), by convolving it with mask
0.25 × 12×2 to simulate sensor integration, and then down-
sampling it by a factor of two by discarding every other
pixel in each direction and adding zero mean Gaussian noise
with variance 16. For the PAN image we used the lumi-
nance of the original color image and zero mean Gaussian
noise of variance 9 was added. The observed MS image was
upsampled to the same size of PAN image by bicubic in-
terpolation and then 3 levels of NSCT decomposition was
applied on each upsampled MS band and PAN image with
4 and 8 directional levels, for the first two and the third
decomposition levels, respectively. The proposed algorithm
was run on the resulting coefficients bands until the crite-
rion ‖(yldi )k − (yldi )k−1‖2/‖(yldi )k−1‖2 < 10−4 was satisfied,
where (yldi )k denotes the mean of qk(yldi ). When all the pa-
rameters are automatically estimated with no prior knowl-
edge about them, that is, λw = 0, w ∈ Ω, Algorithm 2
typically converges within 4 iterations. Since, as previously
said, the different level and direction bands are indepen-
dent though related, in order to provide the method with
some prior knowledge about the value of the parameters, we
have studied the relationships between the parameters on
the different levels. For that, we generated images following
a Gaussian distribution with zero mean and different values
for the variance, applied the contourlet decomposition to the
images, and calculated the variance of the noise at each level
and direction. Studying those values we found the relation-
ship between the inverse of the variance of the coefficients
for three level of decompositions, the first with 4 directions
and the second and third with 8 directions, those values were

used for β̄ldb and γ̄ldb and we set λ1d
ω = 0, for all ω ∈ Ω, and

λldαb
= 0, λldβb = 0.9, λldγb = 0.9, for l > 1. We found that

providing the algorithm with this prior knowledge, from the
relationship between the coefficients, improved the obtained
images and reduced the calculation time. We compared the
proposed NSCT using Bayesian inference method with the
SR method in [7] and the additive NSCT method [5]. The
obtained images corresponding to each method are displayed
in Fig. 4(d)-(f).

To assess the spatial improvement of the pansharpened
images, we use the correlation of the high frequency compo-
nents (COR) which takes values between zero and one (the
higher the value the better the quality of the pansharpened
image). Spectral fidelity was assessed by means of the peak
signal-to-noise ratio (PSNR), the Structural Similarity In-
dex Measure (SSIM), an index ranging from −1 to +1, with
+1 corresponding to exactly equal images, and the ERGAS
index, a global criterion for which the lower the value, the
higher the quality of the pansharpened image. See, for in-
stance, [1] for a detailed description of those measures. Ta-
ble 1 shows the corresponding quantitative results. The pro-
posed method with prior knowledge provides the best results
for each measure. The COR values reflect that all methods
are able to incorporate the details of the PAN image into
the pansharpened one, although the SR method in [7], see
Figure 4(e), introduced less details in the band 3 (blue) since
it contributes less to the PAN image and more into the band
2 (green) since it has the highest contribution, which is re-
flected as a greenish color near the edges of the image. The
NSCT method in [5] incorporates details in all the bands
but produces a noisy image, depicted in Figure 4(d). The
proposed method (Figure 4(f)) is able to incorporate details
in all the bands while controlling the noise and avoiding the
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(a) Original (b) Observed MS (c) Observed PAN (d) Add-NSCT in [5] (e) SR in [7] (f) Proposed method

Figure 4: Results for the synthetic image

(a) Observed MS (b) Observed PAN (c)Add-NSCT in [5] (d) SR in [7] (e) proposed method

Figure 5: Results for the SPOT5 image

color bleeding effect. The spectral fidelity measures shows
that the proposed method performs better than the com-
peting methods, which is also clear from the image in Fig-
ure 4(f). The PSNR for the proposed method is about 10dB
higher than for the Add-NSCT method in [5] and from 2dB
to almost 6dB higher than for the SR method in [7], with
remarkable high SSIM and low ERGAS values which reflect
the high quality of the resulting images.

In a second experiment, the method was tested on a real
SPOT5 dataset. Figure 5(a) shows a region of the RGB
color image representing bands 1 to 3 of the MS image. Its
corresponding PAN image is depicted in Figure 5(b). Visual
inspection of the resulting images, displayed in Figures 5(c)-
(e), reveals similar conclusions to the obtained for the syn-
thetic image. The proposed method calculates the param-
eters automatically and provides the best result, preserving
the spectral properties of the MS image while incorporating
the high frequencies from the panchromatic image and con-
trolling the noise in the image. The NSCT method in [5]
(Fig.5(c)) provides a detailed image but quite noisy, the SR
method in [7] provides good details for bands 1 and 2, see
Figure 5(e), but not for bands 3 and 4 since the PAN image
does not cover those bands. This is why the blue color in Fig-
ure 5(e), seems to be vanished. The proposed method suc-
cessfully preserves the colors, incorporates the details from
the PAN image into the pansharpened image and controls
the noise in the images.

6. CONCLUSION

In this paper, a new pansharpening method based on super-
resolution reconstruction and non subsampled contourlet
transform has been presented. The proposed method gen-
eralizes the fusion strategy of the panchromatic and mul-
tispectral images in contourlet based methods. The pro-
posed fusion algorithm is based on the Bayesian modeling
and incorporates a solid way to incorporate the details of
the panchromatic into the multispectral image, while con-
trolling the noise. Particular cases of the proposed fusion
method are substitution, additive and weighted contourlets
methods. The relationship between the contourlet coeffi-
cients has been examined. The use of this knowledge by
the algorithm improved its performance. The method also
estimate automatically the HRMS image and the unknown
hyperparameters.

The efficiency of pansharpening methods has been eval-
uated by means of visual and quantitative analysis, for syn-
thetic and real data. The proposed method preserves the
spectral properties of MS image while incorporating the high
frequencies from the panchromatic image and controlling the
noise in the image. Based on the presented experiments, the
proposed method does significantly outperform NSCT-based
and TV-based super-resolution methods.
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