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ABSTRACT
We propose a computing method for linear convolution be-
tween sequences using discrete cosine transform (DCT).
Zero padding is considered as well as linear convolution us-
ing discrete Fourier transform (DFT). Analyzing the output
range of the resulting convolution, we derive the minimum
number of zero-padding before and after the sequences. The
proposed method requires DCT-2 and DCT-1 transforms re-
gardless of sequences, and can calculate linear convolution
with both linear phase filter and non-linear phase filter. The
computational complexity of the proposed method is lower
than that of linear convolution using DFT. In addition, the
proposed method can be used for computation of linear cor-
relation between two sequences.

1. INTRODUCTION

Discrete cosine transform (DCT) is closely related to discrete
Fourier transform (DFT) [1]. One of the advantages of DCT
over DFT is calculation with real numbers. Generally, DFT
requires calculation with complex numbers. Since the op-
erations of complex numbers take more than those of real
numbers, the number of calculation of DCT is less than that
of DFT for the same length of sequences. DCT has sets of
basis of cosines, which are periodic and even symmetry [2].
Involving several ways of symmetry, DCT has some types.
DCT type 2 (DCT-2) is most popular because it is used for
compression standard, such as JPEG and MPEG. Accord-
ingly many implementations of DCT-2 have been developed.

There are some computing methods for convolution us-
ing DCT [3]-[5]. 40 types of symmetric convolution and their
convolution multiplication properties in the DCT and dis-
crete sine transform (DST) domains are derived [3]. The type
of transforms to be used depends on the type of the symmetry
of the sequences to be convolved in symmetric convolution.
Symmetric convolution cannot calculate linear convolution
with non-linear phase filter. For linear convolution with non-
linear phase filter using DCT, Reju, Koh, and Soon proposed
a method using DCT-2 and DST-2 as forward transform for
a sequence [4], and Suresh and Sreenivas proposed a method
using DCT-4 and DST-4 [5]. These methods require DST in
addition to DCT as both forward and inverse transforms.

In the present paper, we propose a computing method for
linear convolution using DCT-2 as forward transform for a
sequence and DCT-1 as inverse transform regardless of se-
quences. The proposed method can calculate linear convolu-
tion with both linear phase filter and non-linear phase filter.
As well as linear convolution using DFT, we consider proper
zero-padding in the spatial domain. Due to the symmetry im-
plied by DCT, the resulting consists of four convolutions. We
analyze the each output range of four convolutions to isolate

the desired convolution and derive the minimum number of
zero padding before and after the sequences. The computa-
tional complexity of the proposed method is less than that
of linear convolution using DFT. In addition, the proposed
method gives linear correlation between two sequences when
one of the sequences is reversed.

2. PRELIMINARY

Circular convolution as linear convolution and the relation
between DCT-2 coefficients and DFT coefficients are de-
scribed.

Let x(n) be a finite-length sequence of length N such that
x(n) = 0 outside the range 0 ≤ n ≤ N − 1, and let h(n) be a
finite-length sequence of length L such that h(n) = 0 outside
the range 0 ≤ n ≤ L−1.

2.1 Linear convolution
Linear convolution, y(n), of h(n) and x(n) is defined as

y(n) = h(n)∗ x(n) =
∞

∑
m=−∞

h(m)x(n−m) (1)

where the symbol ‘*’ denotes linear convolution operator.
Linear convolution of h(n) and x(n) has the maximum length
M, i.e.,

M = L+N −1. (2)

2.2 Circular convolution as linear convolution
Let x̃(n) be a periodic sequence of x(n) with period P as

x̃(n) =
∞

∑
r=−∞

x(n− rP) = x(((n))P) (3)

where ((n))P denotes n modulo P, and let h̃(n) be a periodic
sequence of h(n) with period P according to (3).

Circular convolution with period P, yP(n), of h̃(n) and
x̃(n) is defined as

yP(n) = h̃(n) P©x̃(n) =
P−1

∑
m=0

h̃(m)x̃(n−m) (4)

=
P−1

∑
m=0

h(m)x(((n−m))P), 0 ≤ n ≤ P−1. (5)

where the symbol ‘ P©’ denotes circular convolution operator
with period P.
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The circular convolution yP(n) of h̃(n) and x̃(n) with P-
point DFT coefficients Y (k), H(k), and X(k), respectively, is
calculated as

Y (k) = H(k)X(k), 0 ≤ k ≤ P−1 (6)

where P-point DFT coefficients, X(k), of x̃(n) is defined as

X(k) =
P−1

∑
n=0

x̃(n)W nk
P , 0 ≤ k ≤ P−1 (7)

and WP denotes exp(− j2π/P).
When the circular convolution has a period of at least M

in (2), circular convolution and linear convolution are identi-
cal.

2.3 Relation between DCT-2 and DFT
Let x̃s(n) be a periodic sequence extended from finite-length
sequence x(n) of length N to have period 2N as

x̃s(n) = x(((n))2N)+ x(((−n−1))2N). (8)

2N-point DFT coefficients, X̃s(k), of x̃s(n) and N-point
DCT-2 coefficients of XC(k) of x̃s(n), 0 ≤ n ≤ N − 1, i.e.,
x(n) are related as

X̃s(k) =
√

2N/kkXC(k)W−k/2
2N , 0 ≤ k ≤ N −1. (9)

where P-point DCT-2 coefficients, XC(k), of x(n) are defined
as

XC(k) =

√
2
P

P−1

∑
n=0

kkx(n)cos
(

π(n+1/2)k
P

)
,0 ≤ k ≤ P−1

(10)

and kk is the weighting function:

kk =
{

1/
√

2, k = 0
1, otherwise . (11)

Circular convolution, ỹ2N(n), of x̃s(n) and h̃s(n) extended
from x(n) and h(n) according to (8) is calculated with their
N-point DCT coefficients of YC(k), HC(k), and XC(k), re-
spectively, as

YC(k) = HC(k)XC(k), (12)

and

yC(n) =
N−1

∑
k=0

k2
kYC(k)cos

(
πnk
N

)
. (13)

Note that (13) corresponds DCT-1.
Since, from (9), 2N-point DFT coefficients, Y (k) =

Hs(k)Xs(k) is related with YC(k) as

Y (k) = 2N/(kk)2YC(k)W−k
2N , (14)

The relation between yC(n) and ỹ2N(n) is expressed by

yC(n) = y2N(n−1), 0 ≤ n ≤ N −1. (15)

Thus, we can handle DCT-2 coefficients of a sequence as
DFT coefficients of the symmetrically extended sequence.

3. PROPOSED COMPUTING METHOD

3.1 Consideration
Circular convolution with period at least the maximum length
of a linear convolution is identical to the linear convolution,
which can be calculated using DFT. We can also handle DCT-
2 coefficients of a sequence as DFT coefficients of the sym-
metrically extended sequence. Therefore, we analyze circu-
lar convolution between symmetrically extended sequences
as convolution using DCT.

Let x̃s(n) and h̃s(n) be periodic sequences with period
2N of x(n) and h(n), respectively, according to (8). Circular
convolution, ỹ2N(n), with period 2N of x̃s(n) and h̃s(n) is
developed from (8) as

ỹ2N(n) = x̃s(n)2N©h̃s(n)
= [x(((n))2N)+ x(((−n−1))2N)]

2N©[h(((n)2N))+h(((−n−1))2N)]
= x(((n))2N)2N©h(((n))2N)

+ x(((n))2N)2N©h(((−n−1))2N)
+ x(((−n−1))2N)2N©h(((n))2N)
+ x(((−n−1))2N 2N©h(((−n−1))2N). (16)

The resulting ỹ2N(n) has four circular convolutions with pe-
riod 2N. Each circular convolution with period 2N is iden-
tical to corresponding linear convolution of length M with
respect to x(n) and h(n) because 2N > M.

Our goal is to isolate one linear convolution with respect
to x(n) and h(n) from other three in ỹ2N(n).

3.2 Analysis of convolution using 2P-point DFT
We consider proper zero-padding in sequences as well as lin-
ear convolution using DFT.

Without loss of generality, we assume finite-length se-
quences x′(n) and h′(n) both of length P including x(n) and
h(n), respectively, such that x′(n) = 0 and h′(n) = 0 outside
the range 0 ≤ n ≤ P−1, i.e.,

x′(n) =

{ 0, 0 ≤ n ≤ P1 −1
x(n−P1), P1 ≤ n ≤ P4 −1
0, P4 ≤ n ≤ P−1

(17)

h′(n) =

{ 0, 0 ≤ n ≤ P2 −1
h(n−P2), P2 ≤ n ≤ P3 −1
0, P3 ≤ n ≤ P−1

(18)

where

0 ≤ P1 ≤ P2 ≤ P3 ≤ P4 ≤ P, (19)
P3 = P2 +L, (20)
P4 = P1 +N. (21)

Figure 1 illustrates an example of x(n), h(n), x′(n), and h′(n).
From (16), circular convolution, ỹ′2P(n), of periodic se-

quences x̃′s(n) and h̃′s(n) extended from x′(n) and h′(n), re-
spectively, to have period 2P according to (8) consists of four
circular convolutions with period 2P, i.e.,

ỹ′2P(n) = x̃′s(n) 2P©h̃′s(n)

= y(1)
2P (n)+ y(2)

2P (n)+ y(3)
2P (n)+ y(4)

2P (n) (22)
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Figure 1: An example of x(n), h(n), x′(n), and h′(n).

where

y(1)
2P (n) = x′(((n))2P) 2P©h′(((n))2P), (23)

y(2)
2P (n) = x′(((n))2P) 2P©h′(((−n−1))2P), (24)

y(3)
2P (n) = x′(((−n−1))2P) 2P©h′(((n))2P), (25)

y(4)
2P (n) = x′(((−n−1))2P) 2P©h′(((−n−1))2P). (26)

From (23), (24), (25), and (26), they have symmetry as

y(1)
2P (n) = y(4)

2P (−n−1), (27)

y(2)
2P (n) = y(3)

2P (−n−1). (28)

The four circular convolutions are identical to corre-
sponding linear convolution with respect to x(n) and h(n)
shown in (29), (30), (31), and (32). Figure 2 illustrates the
output range of each linear convolution in ỹ2P(n) when x′(n)
and h′(n) have enough zero-padding before and after x(n)
and h(n), respectively, i.e.,

0 � P1 < P2 < P3 < P4 � P. (33)

Note that y(2)
2P (n) and y(3)

2P (n) are overlapped. We cannot sep-
arate y(2)

2P (n) from y(3)
2P (n) (See Appendix).

Therefore, we isolate y(1)
2P (n) from the other linear convo-

lutions in ỹ2P(n).

3.3 Derivation of proper zero-padding
We derive the locations P1, P2, and P for the minimum num-
ber of zero-padding to isolate y(1)

2P (n).

!"

y
(3)
2P

(n)
#

#

y
(2)
2P

(n)

y
(3)
2P

(n)
#

#

y
(2)
2P

(n)

y
(4)
2P

(n)y
(1)
2P

(n)

$ "

##

%

Figure 2: Output range of each linear convolution with re-
spect to x(n) and h(n) in ỹ′2P(n) = h̃′s(n) 2P©x̃′s(n) where 0 �
P1 < P2 < P3 < P4 � P.

Firstly, we align the output range of y(2)
2P (n) on that of

y(3)
2P (n) to minimize the period (2P) of y2P(n). Next, we iso-

late y(1)
2P (n) from the others. Since y(1)

2P (n) and y(4)
2P (n) are

symmetry as shown in (27), to isolate y(1)
2P (n) from the others

is to isolate y(4)
2P (n) at the same time. Therefore, the minimum

period (2P) of y2P(n) is expressed by

2P = 3M. (34)

The condition for which the output ranges of y(2)
2P (n) and

y(3)
2P (n) are the same is, from (30) and (31),

2P−1−P3 +P1 = 2P−1−P4 +P2. (35)

It follows that, from (20) and (21),

P2 = P1 +(N −L)/2. (36)

The condition for which y(1)
2P (n) is not overlapped on y(3)

2P (n)
is

−2−P4 +P2 +M−1 < P1 +P2. (37)

It follows that, from (21) and (36),

(L−3)/2 < P1. (38)

Therefore, the locations P1, P2, and P for the minimum
number of zero-padding are, from (34), (36), and (38),

P1 > (L−3)/2, (39)
P2 = (N −3)/2, (40)
P > (3M)/2. (41)

Thus, proper zero-padded sequences x′(n) and h′(n) ac-
cording to (39), (40), and (41) are generated to isolate y(1)

2P (n).
The linear convolutions can be obtained from x′(n) and h′(n)
with P-point DCT-2 in the proposed method. Note that the
number of zero-padding can be more reduced if the transient
output in the resulting is not required. Details are omitted
due to space limitation.

3.4 Steps of the proposed method
Steps of the proposed method is summarized as follows:
1. Make zero-padded signals x′(n) and h′(n) from x(n) and

h(n) according to (39), (40), and (41).
2. Apply DCT-2 to x′(n) and h′(n).
3. Multiply the DCT-2 coefficients element by element.
4. Apply DCT-1 to the product.
5. Extract the output.
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y(1)
2P (n) =

{
x(n)∗h(n), P1 +P2 ≤ n ≤ P1 +P2 +M−1
0, otherwise (29)

y(2)
2P (n) =

{
x(n)∗h(−n−1), 2P−1−P3 +P1 ≤ n ≤ 2P−1−P3 +P1 +M−1
0, otherwise (30)

y(3)
2P (n) =

{
x(−n−1)∗h(n), 2P−1−P4 +P2 ≤ n ≤ 2P−1−P4 +P2 +M−1
0, otherwise (31)

y(4)
2P (n) =

{
x(−n−1)∗h(−n−1), 2P−1−P3 +2P−1−P4 ≤ n ≤ 2P−1−P3 +2P−1−P4 +M−1
0, otherwise (32)
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Figure 3: Zero-padded sequences x′(n) and h′(n) with P1 = 1,
P2 = 10, P = 35 according to (39), (40), and (41).

3.5 Linear correlation

We can also consider y(2)
2P (n) and y(3)

2P (n) as linear correla-
tion with respect to x(n) and h(n) from (24) and (25). When
setting x′(n) in (17) to have the reverse of x(n), we can ob-
tain the linear correlation with respect to x(n) and h(n) from
y2P(n) of x′(n) with h′(n).

4. SIMULATION

4.1 Experimental result
We performed linear convolution of x(n) and h(n) of length
N = 21 and L = 3, respectively.

Figure 3 shows zero-padded sequences, x′(n) and y′(n)
with P1 = 1, P2 = 10, P = 35, according to (39), (40), and
(41). Figure 4 shows four convolutions using 2P-point DFT
when 2P-point sequences are generated from x′(n) and y′(n)
shown in 3. Symbols ‘•’, ‘×’, ‘4’, and ‘◦’ denote y(1)

2P (n),
y(2)

2P (n), y(3)
2P (n), and y(4)

2P (n), respectively. We can see that
y(1)

2P (n) is properly isolated from the others. Figure 5 shows
the resulting convolution using the proposed method. Linear
convolution of x(n) and h(n) can be obtained from P-point
resulting.

4.2 Computational complexity
Computational complexity of the proposed method is com-
pared to that of linear convolution using DFT.

One of the advantages of DCT over DFT is calculation
with real numbers. A fast algorithm of DCT for a sequence

0 10 20 30 40 50 60 70
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0
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10

15

20

25

30

35

n

y 2P
(n

)

Figure 4: Four linear convolutions with respect to x(n) and
h(n) by 2P-point DFT where P1 = 1, P2 = 10, P = 35. Sym-
bols ‘•’, ‘×’, ‘4’, and ‘◦’ denote y(1)

2P (n), y(2)
2P (n), y(3)

2P (n), and
y(4)

2P (n), respectively. y(1)
2P (n) can be isolated from the others

due to proper zero-padding.

of length N runs with

Mreal = (N/2) log2 N+1, (42)
Areal = (3N/2) log2 N−N+1 (43)

where Mreal and Areal denote the number of multiplications
and additions with real numbers, respectively [6]. FFT, the
fast algorithm of DFT, on the other hand, for a sequence of
length N runs with

Mcomplex = (N/2) log2 N, (44)
Acomplex = N log2 N (45)

where Mcomplex and Acomplex are the number of multiplica-
tions and additions with complex numbers, respectively [7].

Figures 6(a) and 6(b) show the number of multiplications
and additions in real numbers, respectively, for linear convo-
lution of length M, in which one multiplication in complex
numbers can be realized by three multiplications and three
additions in real numbers by Nakayama’s method [8]. The
number of operations in the proposed method is less than
that in linear convolution using FFT.

5. CONCLUSION

We have proposed a computing method for linear convolu-
tion using DCT. From the relation between DCT-2 and DFT
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Figure 5: Linear convolution using the proposed method.
Linear convolution, y(1)

2P (n), can be isolated from the others
due to proper zero-padding using P-point DCT coefficients.

coefficients, we have analyzed circular convolution between
sequences extended symmetrically for DCT-2. The output
range of linear convolution has been analyzed and the mini-
mum number of zero-padding before and after sequences has
been derived. We have shown the correctness and effective-
ness of the proposed method in some simulations comparing
to convolution using DFT.
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Appendix

We show that we cannot separate y(2)
2P (n) from y(3)

2P (n).
Firstly, we assume

y(2)
2P (n) < y(3)

2P (n). (46)

That is, the right side of output range of y(2)
2P (n) is less than
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(a) The number of multiplications in real numbers.
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(b) The number of additions in real numbers.

Figure 6: The number of multiplications in real numbers for
linear convolution of length M. One multiplication in com-
plex numbers is three multiplications and three additions in
real numbers by Nakayama’s method.

the left side of the output range of y(3)
2P (n):

2P−1−P3 +P1 +M−1 < 2P−1−P4 +P2. (47)

It follows that

P1 −P2 < −(N −1). (48)

If P1 = P2, then (48) cannot be satisfied because the right
hand is zero and the left hand is negative. If P1 < P2, then (48)
cannot be satisfied because P2 ≤ N − 1 under 0 ≤ P1 < P2.
Hence, (46) is invalid.

Next, we assume

y(3)
2P (n) < y(2)

2P (n). (49)

That is, the right side of output range of y(3)
2P (n) is less than

the left side of the output range of y(2)
2P (n):

2P−1−P4 +P2 +M−1 < 2P−1−P3 +P1. (50)

It follows that

P2 −P1 < −L+1. (51)

If P1 = P2, then (51) cannot be satisfied because −L+1 ≤ 0.
If P1 < P2, then (51) cannot be satisfied because the right
hand is positive and the left hand is −L+1 ≤ 0. Hence, (49)
is invalid.

Therefore, y(2)
2P (n) cannot be separated from y(3)

2P (n).
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