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ABSTRACT
High resolution wideband near-field imaging requires wide-
band signals and large array apertures. Hence, a large amount
of data needs to be processed in the image formation step.
The standard delay and sum beamformer scales linearly with
both output size and number of measurements resulting in
high computational load. We propose a novel approach for
image formation reducing the numerical complexity based
on the non-equispaced fast Fourier transform (NFFT). The
conventional delay and sum beamforming algorithm is re-
formulated such that the computational efficiency of the
NFFT is exploited. Experimental results from a through-the-
wall radar imaging system show a good improvement of the
speed whereas the introduced error is kept very low.

1. INTRODUCTION

Various array signal processing applications, such as urban
sensing [1, 2] or terahertz imaging [3] require wideband near-
field beamforming or imaging. They have in common that
sensor arrays and/or multiple measurements are used to re-
construct images of a scene of interest. Typically, high res-
olution images are desired to perform subsequent automated
image analysis, e. g. segmentation and classification.

High resolution in the array plane (cross-range) and per-
pendicular to the array plane (downrange) calls for wideband
large aperture systems. This results in a large number of mea-
surements that need to be processed to form the output im-
age. Existing approaches tackling the numerical complexity
exploit assumptions such as far-field geometry or uniformly
spaced linear arrays. However, if the focus delays are highly
nonlinear these fast algorithms break down and one has to
resort to the much more flexible backprojection [4, 5].

The standard backprojection or delay and sum beam-
forming approach requires O(QMN) evaluations of a com-
plex exponential with subsequent weighted summation.
Here, Q is the number of output pixels, M is the number of
samples per sensor and N is the number of array elements.
For high resolution images and large number of measure-
ments this can be computationally very costly.

The formulation of the delay and sum beamformer
has strong similarities to the discrete/fast Fourier transform
(DFT/FFT). However, the nodes in the sum are not spaced
regularly. In the end of the 1990s the concept of the FFT
has been generalized to the so-called non-equispaced FFT
(NFFT) [6, 7, 8]. The NFFT allows the fast approximate cal-
culation of the DFT, when time and/or frequency nodes are
non-equispaced.

We propose a novel approach which accelerates conven-
tional delay and sum beamforming based on the NFFT. The

standard beamformer equation is re-formulated such that the
involved sums can be replaced by the NFFT. Hence, the com-
putational efficiency of the NFFT is exploited for wideband
near-field beamforming. It is shown that the numerical com-
plexity is reduced toO(N(M logM + | logε|Q)), which is ex-
ponentially better than the classical backprojection approach.

In this paper, we focus on the application in through-the-
wall radar imaging (TTWRI). The goal of this technology
is to acquire detailed information of a scene using electro-
magnetic wave propagation that cannot be observed by other
means. As TTWRI is designed for use in time critical situ-
ations, such as hostage crises or search and rescue missions,
fast imaging results are vital. The diffraction of electromag-
netic waves by the wall causes additional nonlinearities in
the focus delays, thus backprojection is most suitable for
TTWRI.

The theoretical considerations are supported by experi-
mental TTWRI data results. For a reasonable amount of mea-
surements and image size, we achieve a reduction in com-
putational load by a factor of 40–50. At the same time the
accuracy of the algorithm results in a PSNR of 50 dB or
above. This precision is usually sufficient and can be further
increased by trading off against speed.

In Section 2, we discuss the basic equations for wideband
near-field beamforming. Furthermore, Section 3 introduces
the concept of the NFFT. We present the proposed NFFT
beamforming algorithm in Section 4. Finally, Sections 5 and
6 provide an assessment of the performance using experi-
mental data and conclude the paper.

2. WIDEBAND NEAR-FIELD BEAMFORMING

The propagation of waves from a transmitter to the target
and back to a receiver is subject to various distortions. The
first order effects, the propagation delay and the reflection at
the target, are modeled for subsequently deriving the image
formation algorithm. The propagation delay depends on the
scene geometry and the propagation medium. Whereas the
reflection at the target results in an attenuation of the signal
and/or a phase shift.

In the following, we consider wideband delay and sum
beamforming (DSBF) for TTWRI as proposed in [5]. The
proposed fast algorithms can, however, be applied to various
imaging techniques or similar problems.

2.1 Received Signal Model
Aiming for a high downrange resolution, a wideband pulse
must be used [5]. Assume that the wideband transceivers are
placed on a physical or synthetic aperture array consisting of
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N elements. In the stepped frequency approach the pulse is
approximated by transmitting narrowband signals at discrete
frequencies. Thus a finite number M of monochromatic sig-
nals with regular spaced frequencies fm are used, covering
the desired band, where m = 0,1, . . . ,M−1.

The received signal model assumes that the region of in-
terest can be described by P discrete targets with different
reflectivities. Now the signal y[m,n] at array element n and
frequency fm can be expressed as

y[m,n] =
P−1

∑
p=0

σpwm exp(− j2π fmτpn), (1)

where wm is the weight of the m-th frequency, σp denotes the
reflectivity of the p-th target and n = 0,1, . . . ,N− 1. If the
wall parameters, i.e. the thickness and the permittivity, are
known, the round-trip delay between the p-th target and the
n-th receiver τpn can be calculated from geometric consider-
ations. For the derivation of the delay for monostatic radar,
see [5].

2.2 Delay and Sum Beamforming

The target region can be divided into a regular grid with fi-
nite number of pixels. Suppose the region of interest covers
Nx and Ny points in crossrange and downrange, respectively.
Using an appropriate numbering scheme, a single index q is
sufficient for addressing all NxNy = Q grid points (xq,yq),
where q = 0,1, . . . ,Q− 1. For simplicity only a 2D target
space is considered, however, the proposed approach can be
straight forwardly extended to the 3D case.

By applying conventional DSBF, the beam can be steered
at each pixel (xq,yq). The complex-valued image or B-scan
can be obtained by [5]

I(xq,yq) =
1

MN

N−1

∑
n=0

M−1

∑
m=0

y[m,n]exp( j2π fmτqn), (2)

where τqn is the delay compensation for the n-th receiver
steering the beam at position (xq,yq), M is the number of
frequency bins and N is the number of array elements. It is
noteworthy that the above equation employs wideband, near-
field beamforming. Thus, the frequency dependent term can-
not be factored out of the exponential and the function for the
propagation delay τqn is highly non-linear. Assuming that the
focus delays τqn are known and precomputed the numerical
complexity of the conventional delay and sum beamforming
algorithm is O(QMN).

3. THE NON-EQUISPACED FFT

The fast Fourier transform is a well known tool for vastly
improving the speed of the DFT. However, the FFT requires
the nodes in time and frequency domain to be uniformly
spaced. The concept of the FFT has been generalized to arbi-
trary sampling situations where the nodes are not uniformly
spaced; see [6, 7, 8]. There are numerous applications for
this concept, e. g. in magnetic resonance imaging (MRI) [9]
or computerized tomography [10].

In this work the C subroutine library NFFT 3.0 [11] as
described in [12] was used as numeric implementation.

3.1 The Equispaced DFT/FFT
Following the standard notational conventions as in [12] the
one dimensional (forward) DFT is defined as

zl =
K−1

∑
k=0

ẑke− j2πkl/K , l = 0, . . . ,K−1, (3)

where K ∈N, ẑk ∈C are the given frequency coefficients and
zl ∈ C are the samples in time domain. The inverse DFT is
now given by

ẑk =
1
K

K−1

∑
l=0

zle j2πkl/K , k = 0, . . . ,K−1.

The direct calculation of these transforms obviously require
O(K2) arithmetic operations, whereas the FFT needs only
O(K logK) to obtain the same result.

3.2 Definition of the Nonequispaced DFT
The definition of the forward DFT (3) can be generalized to
the nonequispaced discrete Fourier transform (NDFT). Given
the equispaced Fourier coefficients ẑk ∈ C,k =−K

2 , . . . , K
2 −

1,K ∈ 2N, as input, the NDFT is defined as the evaluation of
the corresponding trigonometric polynomial z at the set of L
arbitrary nodes al ∈ [− 1

2 , 1
2 ) [12]. This can be expressed as

the sum

zl =

K
2 −1

∑
k=−K

2

ẑke− j2πkal , l = 0, . . . ,L−1. (4)

In general the NDFT cannot be readily inverted. Thus, it
is customary to define the adjoint NDFT [12]

wk =
L−1

∑
l=0

ẑle j2πkal , k =−K
2

, . . . ,
K
2
−1.

Both transforms generally require O(KL) floating point
operations. In most applications L is in the order of K and
thus the evaluation is computationally expensive.

3.3 Efficient Computation
In order to improve computational efficiency of the NDFT
fast approximation algorithms have been developed [6, 7, 8,
13]. These algorithms internally use an oversampled FFT
together with a pre- and postprocessing step. In this fashion
the numerical complexity of the NDFT can be significantly
reduced while only slightly decreasing the accuracy of the
computation.

The NFFT algorithm [12] employed in this paper
achieves a good approximation result for the NDFT with only
O(K logK + | logε|L) operations. Here, ε is the desired ac-
curacy of the computation. The accuracy can be controlled
by an oversampling rate α ∈ R and a window truncation pa-
rameter r ∈N. Generally, the approximatin accuracy and the
computational load increase when increasing α or r.

3.4 Generalization
The concept of the NDFT (4) can be further generalized to
the case where both time and frequency nodes are nonequi-
spaced [8]. The transform is defined by

zl =
K−1

∑
k=0

ẑke− j2πFvkal , l = 0, . . . ,L−1, (5)
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where vk ∈ [− 1
2 , 1

2 ) are arbitrary frequencies and F ∈ N is
the so-called nonharmonic bandwidth. The fast implemen-
tation of this transform is referred to as fast Fourier trans-
form for nonequispaced data in space and frequency do-
main (NNFFT) [12] or as type 3 nonuniform FFT [14]. The
NNFFT takesO(F logF + | logε|(K+L)) operations to com-
pute.

4. FAST BEAMFORMING USING THE
NONEQUISPACED FFT

Observing the formulation of the conventional delay and sum
beamformer (2) we reformulate the problem in order to ap-
ply the NFFT. First we decompose the DSBF to sub-images
In(xq,yq) based on the measurements of sensor n only

I(xq,yq) =
1

MN

N−1

∑
n=0

In(xq,yq). (6)

Subsequently, the sums for the sub-images are modified to
obtain an expression matching the NDFT

In(xq,yq) =
M−1

∑
m=0

yn[m]exp( j2π fmτqn) (7)

=
M/2−1

∑
m=−M/2

yn[m]exp( j2π( fc +m∆f )τqn)

= e j2π fcτqn ·
M/2−1

∑
−m=M/2

yn[m]exp( j2πm∆f τqn)

= e j2π fcτqn ·
M/2−1

∑
−m=M/2

yn[m]exp(− j2πm(−∆f τqn))︸ ︷︷ ︸
Can be calculated using the NDFT/NFFT

,

where fc is the center frequency and ∆f is the frequency step
width.

The reformulated DSBF can be calculated efficiently us-
ing the NFFT. In this fashion the required operations de-
crease to O(N(M logM + | logε|Q)) as N evaluations of the
NFFT are performed.

4.1 Fast Calculation of the Measurement Equation
Using similar reformulations as above one can find a fast
method for evaluating the measurement equation (1) using
the adjoint NDFT/NFFT. Many iterative optimization algo-
rithms require the alternating calculation of the predicted
measurements and the beamforming result, e. g. compressive
sensing approaches [15]. These methods benefit from a fast
evaluation of the measurement equation.

4.2 Fast Beamforming with Sparse Frequency Measure-
ments
In some applications, one may not use uniformly spaced fre-
quency measurements around a certain center frequencies,
but the frequencies are rather irregularly spaced. E. g. when
applying compressive sensing, using a random subset of the
uniformly spaced frequencies is beneficial. In this case, it is
possible to use the NNFFT (5) for the fast generation of the
beamformed image.

(a) NFFT DSBF (b) NNFFT DSBF

(c) Residuals of NFFT DSBF (d) Resid. of NNFFT DSBF

Figure 1: Images (a) and (b) show B-scans of the single
sphere scene applying the fast beamforming algorithms. See
(c) and (d) for the residuals as compared to conventional
DSBF

The expression for the sub-images (7) can be rewritten as

In(xq,yq) =
M̃−1

∑
m=0

yn[m]exp
(

j2πF f̃mτ̃qn
)

︸ ︷︷ ︸
Can be calculated using the NNFFT

,

where M̃ is the number of frequency bins, c1 · fm = f̃m ∈
[− 1

2 , 1
2 ),c2 ·τqn = τ̃qn ∈ [− 1

2 , 1
2 ) are scaled versions of the re-

spective variable without a tilde. For the nonharmonic band-
width F and the scaling constants c1,c2 ∈ R the following
conditions must hold

c1c2F = 1, F ∈ N.

The smallest possible F should be chosen in order to mini-
mize computational cost.

The fast implementation of the DSBF on sparse fre-
quency data only needs O(N(F logF + | logε|(Q + M̃)))
floating point operations. This results from one NNFFT com-
putation for each of the N sensors.

Using the adjoint NNFFT, the measurement equation (1)
can be quickly computed for irregularly spaced frequencies.

5. EXPERIMENTAL RESULTS

The measurements were acquired using a TTWRI system in
an anechoic chamber with a reflective floor. A uniformly
spaced square array with 57 × 57 elements having an ele-
ment spacing of 2.2 cm is placed in front of a concrete wall
at a distance of 1.05 m. From each element, 801 monofre-
quent measurements are taken equally spaced from 700 MHz
to 3.1 GHz. The center of the array is 1.22 m above the floor.
The wall parameters, wall thickness d = 14.3 cm and relative
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Figure 2: Computation time vs. total number of pixels in
output image

permittivity εr = 7.6632, are known. Behind the wall a single
sphere (diameter of 25 cm) is placed on a foam column with
height 1.2 m. The considered B-scan cut is taken at a height
of 18 cm above the array center which is approximately the
middle of the sphere. In Figure 1 two examples B-scans and
the respective residuals are depicted.

In order to evaluate the savings in terms of numerical
complexity, two different scenarios have been considered.
For both scenarios 1500 array elements were chosen ran-
domly to reduce the image generation time. As for all algo-
rithms the time will scale linearly with the number of array
elements the dependency on this parameter was not evalu-
ated numerically. For all near-field wide band beamforming
algorithms it was assumed that the focus delays τqn were cal-
culated and stored beforehand. The computations were car-
ried out in MATLAB(tm) C-mex functions on a work station
with 3.1 GHz AMD Phenom(tm) II X2 550 Processor in sin-
gle threaded mode.

In the first scenario, the number of frequency bins was
fixed to M = M̃ = 801 and the size of the output image was
varied. The number of output pixels Q was set to 16×16 =
28,210, . . . ,216. For each image the straight forward DSBF
method and the two proposed efficient approaches were eval-
uated. For the approximation algorithms the parameters were
chosen such that the PSNR stays in the order of 50 dB. The
running time is shown on a log-log scale in Figure 2.

As expected, the plain DSBF algorithm scales according
to Q. For the NFFT implementation the computation time
scales accordingly due to the | logε|Q term dominating the
complexity order. In the case of the NNFFT the running time
has a flat start as M̃ > Q in this region. For a larger number of
pixels, Q dominates in | logε|(Q+ M̃), hence the implemen-
tation scales according to the other methods. It is evident
that the constant involved in the complexity is about 40-50
times for the (N)NFFT implementations and thus a good per-
formance improvement is achieved.

In the second scenario the size of the output image was
fixed to Q = 128× 128 = 214 and the number of frequency
bins was varied. The frequency bins were subsampled by
a factor of 1,2, . . . ,25. Again, the three different algorithms
were evaluated. For the approximation algorithms, the PSNR
was 50 dB or better except for the case where only 25 fre-

Figure 3: Computation time vs. number of frequency bins

(a) (b)

Figure 4: Computation time and PSNR vs. oversampling rate
α and window length r for the NNFFT approach.

quencies were used. The running time is shown on a log-log
scale in Figure 3.

The plain DSBF algorithm scales linearly with the num-
ber of frequency bins M as well. However, in this scenario
the approximation algorithms show a different behavior. For
both NFFT and NNFFT the computation time remains con-
stant with increasing number of frequencies. This is due to
their complexity depending on the sum of the number of fre-
quency bins and pixel (disregarding the constants) rather than
the product of the both. This results in a good performance
improvement for a realistic number of frequencies of 400 to
800.

Furthermore, the approximation accuracy of the pro-
posed methods is evaluated. In both of the above scenar-
ios, the NNFFT algorithm performs slightly better than the
NFFT algorithm. Having the additional advantage of being
more flexible only the NNFFT approach will be considered
in the following study.

The image size was set to Q = 128× 128 = 214 and the
number of frequency bins was fixed to M = M̃ = 801. Two
approximation parameters of the NNFFT algorithm were
considered. Firstly, the oversampling factor α and and sec-
ondly the window truncation length r. The computation time
and the PSNR are depicted in Figure 4 for a reasonable pa-
rameter range according to [12].

It can be observed that the computation time solely de-
pends on the choice of r in the given scenario. For a choice
of r = 1,2 the PSNR is well above 50 dB which should be
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sufficient for most applications. Hence, this is a good trade-
off between speed and accuracy. Increasing the oversampling
factor α slightly improves the PSNR as well. As there is
no additional computational cost involved it is beneficial to
chose a large α .

6. CONCLUSION

A novel application of the (N)NFFT in order to accelerate
wideband near-field delay and sum beamforming has been
presented. By exploiting the structure of the beamforming
equation an efficient implementation was proposed. Using
experimental data the numerical efficiency was shown to be
improved by a factor of 40 to 50 while keeping the PSNR in
a very good range.
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