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ABSTRACT
This paper provides simplistic models for optimization over
transmit, equalization, and decoding power in a communi-
cation system for a given attainable rate, bandwidth, error-
probability, and the channel taps between the transmitter
and the receiver. For equalization, we focus on the digi-
tal feedback equalizer (DFE) and observe that the number
of taps equalized should increase with the transmit power,
and characterize the regime to where additional available
power should be invested in transmission or equalization.
For decoding, we focus on the message-passing decoder for
any code, and provide a model for power consumed in the
computational nodes and interconnects of the decoder, using
which we formulate an optimization problem to minimize
the total power consumed in transmission, equalization, and
decoding.

1. INTRODUCTION

In a communication system, information travels from the
sender to the receiver not merely through the communication
channel, but also through processing circuits and chips on
the transmitting and receiving modules. Conceptually, a the-
ory of information processing is thus an integral part of the
theory of information communication. Practically, the de-
creasing distances have brought the transmit power down to
the level of processing power (or even lower [1]) and hence a
theory of information that does not fully understand process-
ing could also have diminished practical significance.

How do we build a theory of information that also in-
cludes processing computations? Prima facie, it seems that
we have the tools: the existing theory of communication
needs to be coupled with the theory of computation, because
the latter intends to understand precisely the computational
requirements for various problems. The greatness of the Tur-
ing machine model in the theory of computation is its sim-
plicity and generality: it can be adapted to simulate the logic
of any computer algorithm. The hope therefore is that the
results from the study of Turing’s machine can help under-
stand computation for processing signals at the transmitting
and receiving ends as well.

However, the results on Turing’s machine fall short on
two counts. First, the connection between relevant parame-
ters such as power, area, and (more controversially) time re-
quired for computation and the abstraction of Turing’s model
is merely suggestive (see [2] for a deeper look into the issue).
Second, and more importantly, a significant aspect of the-
ory of information are fundamental bounds that limit the per-
formance of any communication scheme through converses.
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Similar fundamental bounds on Turing’s machine have been
extremely hard to find1.

For the purpose of understanding computation for an en-
hanced theory of information, it is therefore prudent to shift
attention to more restricted models of computation that could
be closer to implementation. Towards building a such a the-
ory of information, we focused on models of decoding, bor-
rowing ideas from the “VLSI model” of computation [4],
and the model of communication complexity [5] in order to
understand decoding power [1, 6, 7]. In [6], we derive fun-
damental lower bounds on neighborhood size of message-
passing decoding that we use to obtain lower bounds on
power consumed in computational nodes [1] and wires [7]
in a VLSI implementation of a decoder. These bounds show
not only that there is a fundamental tradeoff between trans-
mit and decoding power, and but also that one needs to op-
erate at a non-zero gap from capacity in order to minimize
total power. Traditionally optimal codes that operate close
to capacity are no longer the best because they require large
number of decoding iterations and long wires in decoding
implementation, contributing to a large decoding power.
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Figure 1: An intuitive illustration of why the DFE power consump-
tion should increase with transmit power consumption for full ben-
efit: an increase in transmit power also increases the impact that the
unaccounted paths can have on the performance. The number of
taps (and thus also the power consumption) of the DFE therefore
should increase in order to get the most out of the increased power.
Somewhat surprisingly, our results show that the noise-level might
not matter in the calculation of the number of taps that should be
equalized.

Taking this understanding a step further, a communi-
cation system is not simply about the choice of a coding
scheme. One also has to choose strategies for modula-
tion/demodulation, equalization, etc. In this paper, we seek
to extend our understanding to include equalization as well.
What is equalization useful for? An example channel re-

1The most obvious instantiation of this statement is the fact that the
hypothesis P 6= NP is still unproven. More interestingly, the best lower
bound on the complexity of 3-SAT, an NP-complete problem, is slower than
quadratic in the size of the input [3] even with space restrictions!
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sponse for short-distance communication is shown in Fig. 1.
Because of numerous objects that exist in indoor environ-
ments, the number of multipaths can often be high, intro-
ducing Inter Symbol Interference (ISI). Equalization is per-
formed to reduce the effects of ISI. Because of the large num-
ber of filter taps, the power required for equalization in in-
door environments can be large [8].

Unlike the vast freedom in choice of a code, the choice
of equalization technique is limited to a few in practice, such
as using OFDM followed by FFT, matched filtering, deci-
sion feedback equalizer (DFE), joint equalization and decod-
ing, etc. (see e.g. [8] and the references therein). Empir-
ical comparison of DFE with other techniques in high-rate
short distance applications (e.g. for 60 GHz band in [9])
shows that a DFE is often more power efficient. For sim-
plicity, to begin understanding equalization, we focus on just
the DFE. The larger goal for the future is to obtain a fun-
damental understanding under a model of computation that
is general enough to encompass these techniques as well as
others that are yet to be discovered.

While an empirical comparison of these models of equal-
ization has been performed in the literature (see e.g. [8]),
these models often assume that all relevant paths have been
equalized. As shown in Fig. 1, the impact of unequalized
paths can increase with increasing transmit power. Because
our focus is on minimizing the total system power, we need
to allow for large transmit powers where more paths may be-
come relevant than those at low transmit power. For instance,
a question of interest is: suppose each tap requires Ptap W of
power. Given a working system, if we have an additional Ptap
W of power available, where should we invest it? In trans-
mission, equalization, or decoding?

We first provide models for power consumption in a DFE
equalizer and a decoder in Section 2. We use these models
to analyze the required power for the DFE equalizer: we ob-
serve in Section 3.1 that if transmit power is increased, the
extra “unequalized paths” (see Fig. 1(b)) can start affecting
the performance. Interestingly, we show the impact of unac-
counted taps can be much worse than that of noise of equal
power. We also show that the DFE taps (and therefore, the
DFE power consumption) should also be increased as trans-
mit power is increased in order to maximize the benefit of in-
creased power consumption. In Section 3.2, we analyze the
decoding power based on models for node and wire power
consumption at the decoder developed in Section 2.3. In Sec-
tion 3.3, we then lay down the optimization framework for
optimizing power consumption across transmission, equal-
ization, and decoding.
2. SYSTEM MODEL AND POWER CONSUMPTION

MODELS
2.1 System model
The communication system has a transmitter, who sends kb
bits of information by coding them together using a block-
code at rate R bits per second. The goal is to receive these
bits with an average bit-error probability of at most Pe. PT is
the transmit power “over the air,” the efficiency of the power
amplifier is denoted by η . For simplicity, we assume that η

does not depend on PT even though this is only an approxi-
mation. Thus the total power required for transmission is PT

η
.

The transmitter is assumed to use BPSK signaling to trans-
mit the channel inputs Xi. The coded symbols are received at
the receiver who first performs a channel equalization (using

a DFE for the postcursor coupled with a linear equalizer [10]
for the precursor).

In order to focus on unequalized taps, we ignore the ef-
fect of quantization introduced by the ADC and the option
of using mixed analog and digital DFE. For simplicity of ex-
position, we assume that there are no taps in the precursor.
Because of our assumption of using a linear equalizer for the
precursor, the equalization of the precursor adds a constant
amount to the total power consumption and can be ignored
in the optimization.
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Figure 2: (b) is an abstraction of the implementation of the
decoder shown in (a). The graph that models this chip is the
obvious one: each PE is represented by a node, and each wire
by an edge.

We first need a model of decoding process in order to
account for power consumed in decoding. In [1], we intro-
duced a “VLSI model of decoding” (see Fig. 2) that is in-
spired by Thompson’s “VLSI model from computation” [4].
The decoder consists of computational nodes (or processing
elements, PEs) connected to each other using wires. These
nodes are either (a) ‘message’ nodes that store the decoded
bits after decoding, (b) ‘channel output’ nodes that store the
channel outputs, (c) ‘helper’ nodes that act as intermediaries
of processing by improving connectivity, or (d) any combi-
nation of (a), (b), and (c)

In [1], we ignore the power consumed in all nodes but the
“channel output” nodes, that correspond to variable nodes in
a decoder. In [7], we provided lower bounds on wire-lengths
as a function of code performance, but did not connect the
wire-lengths to power consumption. Here, we complete that
link: in Section 2.3, we introduce models of decoding power
consumption that abstract the power consumed in computa-
tional nodes as well as the decoder interconnects.

2.2 DFE power consumption
The total number of taps in the postcursor is denoted by N.
The received signal at time k, y(k) is given by

y(k) =
N

∑
i=0

hiXk−i +Zk, (1)

where Zk is the additive white Gaussian noise and hi are the
coefficients corresponding to various signal paths. The co-
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efficient h0 corresponds to the main path. The part that is
equalized in the postcursor is assumed to be from taps 1 to
N1. Thus the taps N1 +1 to N are assumed to not have been
equalized (see Fig. 1). Further, we assume that each filter tap
requires Ptap Watts of power for equalization.

We assume that the receiver makes a thresholding hard
decision on the bit value that is blind to the equalization
before (and if) it starts decoding, and thus decoder effec-
tively sees channel outputs corrupted by a binary channel of
crossover probability pch.

2.3 A model for power consumed in decoding implemen-
tation
2.3.1 Model for power consumed by computational nodes

We assume that all nodes consume the same amount of power
regardless of the clock speed and VDD. We note that this as-
sumption is inaccurate because power consumption can vary
across nodes and can depend on the clock speed and VDD.

The energy consumed in decoder nodes in l iterations is,
therefore,

Etotal;nodes = ntotalEnode× l, (2)

where ntotal is the total number of computational nodes at
the decoder, Enode is the energy consumed by a node in one
iteration, and l denotes the number of iterations.

In this simplistic picture, the power consumed in compu-
tational nodes is therefore given by:

Pnodes =
ntotalEnode× l

Tdec
, (3)

where Tdec is the time required for decoding that depends on
the decoding throughput Rdec. The decoding throughput is
given by

Rdec =
kb

Tdec
, (4)

where kb is the number of bits decoded in parallel by the
decoder (in time Tdec). Thus,

Pnodes =
ntotalEnodelRdec

kb
. (5)

2.3.2 Model for power consumed in decoder interconnects

VDD

-VDD

Vth

-Vth

v (t)c

v  (t)in

t
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Figure 3: The charging and discharging of decoder intercon-
nects. vc(t) is the capacitor voltage as it varies with time. Vth
is the required voltage to make the gates work.

Suppose each gate (that receives messages at the compu-
tational nodes from the connecting wires) requires an input
voltage of Vth volts in operate reliably. For simplicity, we as-
sume that each wire is charged and discharged at each time
instant, even though this is not true in practice2. Modeling

2Messages tend to stabilize as decoding proceeds. However, using a non-
fully parallel decoding architecture can slow this stabilization significantly.

each interconnect by the Elmore lumped model [11], the to-
tal energy consumed in charging a wire from zero volts to Vth
volts is given by 1

2CwireVDDVth, where VDD is the maximum
voltage applied in order to charge the capacitance.

Now, Vth = VDD(1 − e−Tclk/rwireCwire), where rwire is
the wire resistance, and Tclk is the clock-cycle. For
Tclk � rwireCwire (i.e. corresponding to high throughputs3),

e−
Tclk

rwireCwire ≈ 1− Tclk
rwireCwire

. Thus, Vth ≈ VDD
Tclk

rwireCwire
. Since

Vth is fixed by the required gate voltage, we get VDD ≈
VthrwireCwire

Tclk
. Thus, the energy consumed in each wire in each

clock-cycle can be approximated by:

Ewire =
1
2

CwireVDDVth =
1
2

rwireC2
wire

Tclk
V 2

th (6)

How do we calculate the capacitance of a wire? Using
Elmore lumped model [11], Cwire =Cparallel−plate+C f ringe+
Cinterwire, where Cparallel−plate is the capacitance of the wire
with the substrate, C f ringe is the fringing capacitance, and
Cinterwire is the capacitance between two wires running close4

to each other. Cparallel−plate and C f ringing are proportional to
the wire-length W , and Cinterwire is proportional to the length
of parallel tracks of the two wires. As a simplification, we
assume that Cwire itself is simply proportional to the length
of the wire. This approximation appears reasonable when
the interconnects are stacked closely together, which is often
the case for decoding circuits. In order to obtain first or-
der results, we observe that for random codes as well as for
many structured code constructions (e.g. see [12–14]), both
the average wire-length and the maximum wire-length scale
linearly with the blocklength. This justifies another assump-
tion: that the average wire-length can be approximated by
the maximum wire-length.

Assuming that the state of the wire switches at each it-
eration, the total energy consumed in the interconnects in l
iterations can now be approximated as

Ewires total =
nwire

∑
i=1

1
2

riC2
i

Tclk
V 2

th× l

=
nwire

2
rwireC2

wire
Tclk

V 2
th× l.

Here Ci is the total capacitance of the i-th wire, nwire is the to-
tal number of interconnects, and Cwire and rwire are the capac-
itance and the resistance of the longest interconnect. Defin-
ing Cunit and runit as the total capacitance and average resis-
tance per unit-length for an interconnect, the total power is
approximately

Pwires =
nwire

2
runitC2

unit
TclkTdec

W 3
maxV

2
th× l

(Tdec=Tclkl)
=

nwire

2
runitC2

unit

T 2
clkl

W 3
maxV

2
th× l

=
nwire

2
runitC2

unit

T 2
clk

W 3
maxV

2
th.

3This approximation will only provide a conservative estimate of the re-
quired power because VDD scales exponentially in Vth at large Tclk .

4The proximity is measured by comparing the distance between the wires
to the width of the wire.
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Further, the time required for decoding, Tdec =
kb

Rdec
= Tclk× l.

This implies that Tclk =
kb

Rdecl . Thus,

Pwires =
nwire

2
runitC2

unitV
2

thR2
dec

k2
b

W 3
maxl2. (7)

Thus, the power consumed in the interconnects increases as
the cube of the length of the longest wire and as the square
of the number of iterations.

3. ANALYSIS AND OPTIMIZATION OF TOTAL
POWER CONSUMPTION

For simplicity, we assume a separation between equalization
and decoding even though joint equalization-decoding archi-
tectures have been suggested in the literature [15].
3.1 Analysis of equalization power
The received signal is given by

y(k) =
N

∑
i=0

hiXk−i +Zk

=

{
N1

∑
i=0

hiXk−i

}
+

(
N

∑
i=N1+1

hiXk−i

)
+Zk,

The term in simple brackets (·) is the term that has not been
equalized at the receiver. The signal remaining after the ac-
tion of DFE is given by

r(k) = h0Xk +

(
N

∑
i=N1+1

hiXk−i

)
+Zk.

The noise and the ISI from the “unequalized paths” to-
gether can cause the bit to be in error at the receiver (post-
equalization). Under the event that the bit at time j > 0 is
b jsgn(h j), the signal power post-equalization is given by

Psig(PT ,~b) = PT

(
|h0|−

N

∑
j=N1+1

b j|h j|

)2

. (8)

Based on hard-decision at the receiver, the raw bit-error prob-
ability P(u)

e is given by

P(u)
e = ∑b j∈{−1,1}

1
2N−N1

Q

(√
2Psig(PT ,~b)√

σ2
z

)
(9)

(a)
≈ 1

2N−N1
Q

(√
2Psig(PT ,~1)√

σ2
z

)
,

where (a) follows from the observation that at high SNR, the
summation is dominated by the term where b j = 1 for all j
(because the Q-function falls exponentially in its argument).
With this approximation, the designer’s goal is maximize the
product term Π := Psig(PT ,~1)

Π =
√

PT ×

(
|h0|−

N

∑
j=N1+1

|h j|

)
, (10)

If Ptap W of power is available, where Ptap is the required
power to run one filter tap, where should it be invested? In-
vesting in transmit power, it increases the transmit power by
ηPtap, and thus brings a marginal gain of

GainT x =

√
PT +Ptapη

PT
, (11)

to the product (here η is the efficiency of the power amplifier
at the transmitter). Invested in equalization power, it brings a
marginal gain of

Gaineq =
|h0|−∑

N
j=N1+2 |h j|

|h0|−∑
N
j=N1+1 |h j|

(12)

(assuming |hN1+1| is the unequalized tap of largest magni-
tude) to the product. The power should therefore be invested
depending on which of the gains ((11) or (12)) is larger.

Notice that, counter to our intuition in Fig. 1, neither (11)
nor (12) depend on the noise level σ2

z ! This is because the
impact of unequalized filter-taps is not like noise. Instead,
they reduce the effective signal power (see (10)). Of course,
in some cases, they can add to the signal power too, but be-
cause of the exponential decay of the Q function, the dom-
inant error probability term in (9) is that which corresponds
to power reduction.
3.2 An analysis of the decoding power
How does the wire-length scale with the number of itera-
tions? If the code is a sparse-graph code, assuming that the
decoding algorithm runs only until the point that all the de-
coding neighborhoods are trees, l = g

2 − 1, where g is the
girth of the code-graph, the longest wire scales exponentially
in the girth [7, Theorem 1]. Thus, if one designs a code that
has a larger girth than what is required by the number of it-
erations that will be executed, the interconnect power con-
sumption can increase sharply.

What if the code is not a sparse-graph code? Even so,
if the decoder implementation can be modeled as in Sec-
tion 2.1, it is shown in [7] that the product of Wmax and the
number of iterations l is lower bounded as follows for any
2-D decoder chip (the bounds can easily be extended to 3-D
chips)

Wmax× l & c
√

Anode

√
log 1

Pe

C(PT )−R
, (13)

where Anode is the area of any computational node that
stores channel outputs. Since interconnect power grows only
quadratically in the number of iterations, but cubically in the
wire-length, from (13) it seems it is best to run more itera-
tions and use wire-lengths as small as possible, keeping the
product Wmaxl close to the lower bound. However, use of
more iterations increases Pnodes, hence we need to look at the
total decoding power.

Total decoding power consumption
From (5) and (7), the total power consumed at the decoder
can therefore be modeled as

Pdec = Pnodes +Pwires

=
ntotalEnodeRdec

kb
l +

nwirerunitC2
unitV

2
thR2

dec

2k2
b

W 3
maxl2.

3.3 An optimization framework for total power con-
sumption
How do we put the the analysis of Section 3.1 and 3.2 to-
gether? Since we assume that a hard decision is performed
after equalization, it is tempting to think of pch as the cross-
over probability of a (memoryless) BSC at the output of the
DFE. However, one needs to be careful: while our bounds

887



in [1,7] assume that the obtained messages have independent
errors, the unequalized taps in a DFE can introduce correla-
tions in messages sent by variable nodes. Nevertheless, we
ignore this correlation in the hope that the randomness in the
code-structure will ensure that most of the channel outputs in
most of the decoding neighborhoods will have independent
errors.

Ignoring the above correlation, the total power is

Ptot = min
PT :C(PT )>R,N1,code,l

PT

η
+Peq +Pdec(Pe,R),

where Peq = PtapN1, and Pdec = Pnodes +Pwire. The opti-
mization is over code as well as the decoder implementation
and the number of iterations l for which the decoding is run.
The decoding throughput Rdec can be assumed to be equal to
the rate R of communication.

What does our analysis above tell us about this optimiza-
tion? For instance, we can again ask the question: where
should a small amount of extra available power be invested?
From (11) and (12), we know how to choose between allo-
cating this power to the equalizer or the transmitter. Decod-
ing power makes this choice more complicated because of
the plethora of possible codes and decoders. To get an es-
timate, we can lower bound this optimization by using the
lower bounds on the decoding power (with help from the
complexity lower bounds in [1, 7]) discussed in Section 3.2.
As in [1, 7], we should not operate too close to the channel
capacity, or over-design codes for error probabilities lower
than required because both of these will require large de-
coding power. Further, as noted in [1], while LDPC codes
might be a wise choice (because of the decay in error prob-
ability with the number of iterations), one should not use
capacity-approaching LDPC codes because they require use
of degree-2 nodes which exponentially slows down the pace
of reduction of error probability [1]. Once this lower bound
has been evaluated, we can then choose the code/decoder that
performs closest to the lower bound. This approach could
guarantee a limited gap from optimality.

4. DISCUSSIONS

In this paper we provided models for power consumed in de-
cision feedback equalizer (DFE) and in the nodes and in-
terconnects of a message-passing decoder. A more satis-
fying theory would not only allow for understanding other
possible ways of equalizing (e.g. matched-filter, OFDM,
rake receiver, etc.), but would also account for power con-
sumed in encoding and ADC, and allow for joint pro-
cessing techniques. One promising recent technique is
that of turbo equalization [16] that is compatible with the
message-passing decoding architecture and might therefore
be amenable to an analysis similar to that in [1].

However, a satisfying theory could require a modeling
of all (possible) equalization techniques, which will likely
be extremely hard. This brings out the biggest obstacle
in understanding computation for communication, or even
more broadly, for embedded and cyber-physical systems [2].
While we would like to use models that are restrictive enough
that interesting results on power, area, and time can be ob-
tained, if the models only abstract the existing architectures,
they may not suggest radically different and improved tech-
niques from those the existing ones. Striking the right bal-
ance between model restrictions and generality could yield
rich dividends.
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