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ABSTRACT

In many real–life Bayesian estimation problems, it is appro-
priate to consider non-Gaussian noise distributions to model
possible outliers or impulsive behaviors in the measurements.
In this paper, we considered a nonlinear Bayesian filtering
problem with a Gaussian process noise and a Gaussian scale
mixture (GSM) distributed measurement noise. Both pro-
cesses’ statistics parameters are assumed unknown. Within
this framework, we present a filtering method based on a
sigma–point core that exploits GSM’s product property and
accounts for such heavier distribution tail and parameter
uncertainty. Numerical results exhibit enhanced robustness
against both outliers and a weak knowledge of the system
with respect to state–of–the–art nonlinear Bayesian filters
based on the Gaussian assumption, requiring much less
computational load than standard Sequential Monte-Carlo
methods and approaching theoretical bounds of performance.

Index Terms— Nonlinear Bayesian filtering, Gaussian
Scale Mixtures, covariance estimation, sigma–point Kalman
filters, Monte Carlo methods

1. INTRODUCTION

The problem under study concerns the derivation of efficient
and robust methods to solve the recursive Bayesian filtering
problem, which implies the on–line estimation of the time–
varying unknown states of a system, using the incoming flow
of information (observations) from the system, along with
some prior statistical knowledge about the variations of such
states. The standard Kalman filter (KF) provides the closed
form solution to the optimal filtering problem in linear/Gaus-
sian systems, assumptions that not always hold, reason why
suboptimal techniques have to be used. A plethora of alter-
natives has been proposed in the last decade to solve the non-
linear estimation problem, among them, the family of sigma–
point KFs (SPKF) [1, 2] within the Gaussian framework, and
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the family of Sequential Monte Carlo (SMC) methods [3] for
arbitrary noise distributions. A limitation of these methods is
that they assume some a priori knowledge of the noise statis-
tics affecting the system (i.e. not only its distribution but its
parameters).

In many real–life systems, Gaussian noise models do not
apply and the noise statistics are unknown. In these scenarios
the methods based on the standard Gaussian Kalman frame-
work (KF, extended KF and SPKF) give poor performances
and we cannot directly apply SMC methods because we have
to estimate the states together with the noise statistics.

Heavy-tailed and elliptical distributions have been shown
to be appropriate for a large number of applications in signal
processing [4, 5] and other fields such economics, engineer-
ing or statistics [6]. In particular, these distributions are useful
to model the existence of outliers or impulsive behaviors on
the measurement model. For a recent review on the use of el-
liptical distributions in signal processing applications see [4]
and references therein. An important subclass of the ellipti-
cal distributions family is the Gaussian scale mixtures (GSM),
a.k.a. Scale Mixture of Normals (SMiN) [7], which include
the Gaussian, the Student-t, the Laplacian and symmetric α-
stable (SαS) distributions, to name a few.

In the literature, some contributions already considered
the robust Bayesian filtering problem in the context of GSM
distributed noises. In [8], the author considered the case
of SαS distributions and gave a solution based on Markov
Chain Monte Carlo (MCMC) inference techniques, and [9]
proposed a direct SMC solution to solve the Bayesian es-
timation problem for linear Time–Varying AutoRegressive
(TVAR) models in the same context. In [10], we proposed a
solution to deal with SαS measurement noise and unknown
statistics for nonlinear multivariate state–space models, but a
framework to deal with general nonlinear state–space models
corrupted by GSM noise, to the authors’ knowledge, is still
missing.

In this contribution, the results presented in [10] are
generalized, providing a framework to deal with GSM dis-
tributed measurement noise. Within this framework, we
propose a robust Bayesian solution against both outliers and
a weak knowledge of the system. Numerical results exhibit
enhanced performances with respect to state-of-the-art non-
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linear Bayesian filters based on the Gaussian assumption,
requiring much less computational load than standard SMC
methods and approaching theoretical bounds of performance.
The paper is organized as follows: Section 2 introduces the
GSM distributions and the system model, Section 3 proposes
a robust Bayesian solution and numerical results for a radar
target tracking problem are given in Section 4.

2. GAUSSIAN SCALE MIXTURE DISTRIBUTIONS
AND THE SYSTEM MODEL

In this section, the GSM distributions, and how to express
a GSM distributed random variable as conditionally Gaus-
sian, are introduced. Then, the system model which considers
GSM distributed measurement noise and the Bayesian esti-
mation problem to be solved are given.

2.1. Gaussian scale mixture distributions

We can define a GSM distributed random vector x through its
stochastic representation [4]:

x
d
=
√
zv, (1)

where d
= means equality in distribution, v is a zero-mean stan-

dard Gaussian random vector and z is a positive scalar random
variable, independent of v, called the generating variate or
scale parameter. The probability density function of x (when
de probability density function (pdf) of the generating variate
exists) can be obtained as

px(x) =

∫
R+

px|z(x|z)pz(z)dz. (2)

These equations describe different families of parametric
distributions depending on the pdf of the generating variate,
pz(z), usually referred to as mixing distribution. The pdf of
the generating variate, z, might depend on a set of parameters
φ, so we should write pz(z;φ) (e.g. for a Student-t distri-
bution φ = ν, the number of degrees of freedom). Some
of these distributions and the resulting GSM pdf, for the
univariate case, are listed in Table 1.

GSM pdf px(x) Mixing distribution pz(z)
Gaussian Dirac
Laplacian Exponential
SαS Positive skewed α-stable
K-distribution Gamma
Student-t Inverse Gamma
Normal-Inverse Gaussian Inverse Gaussian

Table 1. Relation between the GSM distribution and the cor-
responding mixing distribution.

The pdf of x is specified by an ensemble of parameters ψ
which depends on the generating variate and its parametriza-
tion φ, and may include a shift and a scaling (e.g., for a SαS,

φ = α and ψ = {δ, γ, λ, α}, the shift, the scaling, the gener-
ating variate and the index of stability, respectively, see [10]).
We note that within this context, the random vector x is Gaus-
sian when conditioned to z, which is an important property
and the key point of the Bayesian solution presented in Sec-
tion 3. Then,

x|z ∼ N (0, zI), (3)

where we note that the covariance of the Gaussian distribution
is controlled by the generating variate.

2.2. System model and the estimation problem

In this paper we are interested in nonlinear filtering problems
where the process noise is Gaussian and the measurement
noise is GSM distributed, both being additive. The heavy–
tailed measurement noise accounts for possible outliers or im-
pulsive behavior in the observations, giving a more general
and flexible framework than considering the standard Gaus-
sian case [11].

The assumed discrete state-space model is expressed as

xk = fk−1 (xk−1) + vk, (4)
yk = hk (xk) + nk, (5)

where k ∈ Z refers to discrete time instants, xk ∈ RN

and yk ∈ RL are the states and the observations at time
k. We assume that the components of the measurement
(yk,1, ..., yk,L) are independent. f and h are the process and
measurement functions, assumed known and nonlinear in a
general case. Vectors v = {vk, k ∈ Z} and n = {nk, k ∈ Z}
are the process (Gaussian) and observation (GSM) noises,
which are mutually independent with unknown statistics
(i.e., in real–life systems we do not have complete knowl-
edge of the system dynamics). The Gaussian process noise,
vk ∼ N (0,Σv,k), is characterized by its covariance matrix,
Σv,k. We consider that the components of the measure-
ment noise (nk,1, ..., nk,L) are independent, each one being
GSM distributed. Using the conditionally Gaussian form of
a GSM distribution we can write the measurement noise as
nk ∼ N (0,Σn,k), and because of the independence between
components the covariance matrix is

Σn,k = diag (zk,1, . . . , zk,L) zk,i ∼ pzi(zi;φi). (6)

where the subscript i in the generating variate, z, and its
parametrization accounts for possible different GSM noise
distributions within the measurement noise.

The robust Bayesian filtering problem within the con-
ditionally Gaussian form concerns the recursive estimation
of the states xk and the unknown parameters of the system,
namely the process noise covariance matrix Σv,k and the
parameters describing the GSM distribution ψk, or equiv-
alently the random covariance matrix Σn,k. We denote as
θk the overall parameter vector containing both process and
measurement noise parameters.
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3. BAYESIAN SOLUTION

The solution to the robust Bayesian filtering problem for the
state–space model defined in (4) and (5) is given by the joint a
posteriori distribution p(xk,θk|y1:k), which contains all the
information about the states and the model contained in the
observations and the prior knowledge. Its characterization al-
lows us to obtain an optimal estimate with respect to any crite-
rion, for example, the Mininum Mean Square Error (MMSE)
or the Maximum a Posteriori (MAP) estimates. This pdf can
be rewritten as

p(xk,θk|y1:k) = p(xk|θk,y1:k)p(θk|y1:k). (7)

A direct application of a SMC method to obtain the joint es-
timation of the states and the parameters of the model is un-
viable in general because the dimensionality of the problem
is too large and the method would collapse. To overcome this
problem we profit of the underlying Gaussian structure: under
the knowledge of the noise statistics parameters Σv,0:k and
ψ0:k, the state–space model is conditionally Gaussian and we
can resort to standard Gaussian techniques to compute the a
posteriori distribution p(xk|θk,y1:k) (what we call the core
method, which could be any nonlinear Gaussian Bayesian fil-
ter). In addition, at each time step, we need estimates of the
parameters θk, that we can obtain using different strategies.
We propose to use two separate methods, to estimate both
process and measurement noise parameters, which are cou-
pled to the core method. The block diagram structure of the
method is depicted in Fig. 1.

Nonlinear robust filter

Gaussian process 
noise covariance 

estimation 
method

Measurement 
noise statistics 

parameters 
estimation method

Core:
nonlinear 
Gaussian 

Bayesian filter

yk

p(xk, θk|y1:k)

Fig. 1. Block diagram with the three coupled methods’ struc-
ture

3.1. The core method

SPKFs are a family of powerful methods that use a deter-
ministic sampling to approximate the integrals of the optimal
Bayesian filter. The key idea is to compute the means and
covariances used in the standard Kalman solution by prop-
agating the sample set through the process and measurement
nonlinear functions. A further refinement of sigma–point (SP)
schemes comes from the fact that, when we propagate the co-
variance matrix through a nonlinear function, the filter should
preserve the properties of a covariance matrix, namely, its
symmetry, and positive-definiteness. In practice, however,

due to lack of arithmetic precision, numerical errors may lead
to a loss of these properties. To alleviate this problem, a
square-root filter is introduced to propagate the square-root of
the covariance matrix instead of the covariance itself [12, 2].
We propose to use a square–root sigma–point Kalman filter
using quadrature rules (SQKF) to estimate the conditionally
Gaussian filtering density p(xk|θk,y1:k). The process and
measurement noise covariance matrices are provided by two
auxiliary estimation methods described hereafter. For a de-
tailed structure of the SQKF, see [12].

3.2. Process noise covariance estimation

We propose to use a nonlinear version of the covariance
matching method first introduced in [13]. The unbiased esti-
mator of Σv,k+1 at time k within the sigma–point formulation
is

Σ̂v,k+1 =
1

k − 1

k∑
j=1

(qj − q̂)(qj − q̂)T − 1

k

k∑
j=1

βj . (8)

where qk = x̂k|k − x̂k|k−1, q̂ = 1/k
∑k

i=1 qi and βj =∑M
i=1 ωix̃i,j|j−1x̃

T
i,j|j−1−x̂j|j−1x̂

T
j|j−1−Σx,j|j are obtained

from the SP core method [10].

3.3. GSM measurement noise parameters estimation

As we stated in Section 2, the GSM noise distribution depends
on a set of parameters ψk, that may be time-varying in a gen-
eral case. Because the components yk,i are supposed to be
independent, we can estimate the subsets ψk,i independently
for each component. So we can use L parallel filters, each
one estimating one subset, instead of using a method to esti-
mate the whole noise parameters vector at once, what might
be computationally unaffordable.

First of all, we need to define the prior knowledge about
the parameters to be estimated, which information is gath-
ered in p(ψk,i). This distribution depends on the generat-
ing variate and the type of GSM distribution that we con-
sider. From the SPKF we are able to compute the likeli-
hood p(yk,i|ψ0:k, y1:k−1,i), which depends on the predicted
measurement, ŷk|k−1, and the innovation’s covariance ma-
trix, Σy,k|k−1,

p(yk,i|φ0:k,i, y1:k−1,i) = N
(
ŷk|k−1,i,

[
Σy,k|k−1

]
ii

)
. (9)

Using this likelihood and the prior density we are able to con-
struct a Monte Carlo-type solution [14, 3] to estimate the sub-
set ψk,i for each element of the observation, yk,i.

3.4. Computational cost

As a final remark, it is worthwhile to point out the implicit
reduction in the computational cost of the proposed method
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with respect to SMC methods directly applied to jointly es-
timate the states, xk, and the parameter vector θk (for joint
estimation a SMC approach is needed because of the non-
Gaussian measurement noise). Our method also reduces the
number of evaluations of the nonlinear functions f(·) and
h(·), which uses to be time-consuming, given that the num-
ber of SP required to estimate x with a given performance is
much lower than the number of random particles needed to
achieve the same performance in the joint estimation prob-
lem.

4. COMPUTER SIMULATIONS

In this section, in order to provide illustrative numerical re-
sults, the performance of the proposed method is shown in
a radar target tracking example where the heavy–tailed mea-
surement noise applies [15, 11]. In the presented application,
a target was moving in a 2-D plane and was tracked by a
radar whose measurements were range and azimuth, yk =
[rk, ψk]

T . The states to be tracked were position, velocity
and acceleration of the target. These were respectively gath-
ered in vector xk = [px,k, py,k, vx,k, vy,k, ax,k, ay,k]

T . Both
the trajectory and measurements were modeled as

xk =

 I T × I T 2/2× I
0 I T × I
0 0 I

xk−1 + vk, (10)

yk =

( √
p2x,k + p2y,k

arctan(py,k/px,k)

)
+ nk, (11)

where T is the time–interval between measurements, set to 1
second. The Gaussian process noise was modeled as vk ∼
N (0,Σv) and Σv = diag(4, 4, 4, 4, 0.01, 0.01). Each com-
ponent of the measurement noise was Student-t distributed,
nk,i ∼ T (0, σ2

i , νi), where νi refers to the number of degrees
of freedom of the Student-t distribution and σ2

i to a scale pa-
rameter. Using the GSM representation, the Student-t noise
can be written as

nk,i|σ2
i , νi, zk,i ∼ N (0, zk,iσ

2
i ) (12)

where zk,i|ν ∼ IG(νi/2, 2/νi) and IG(α, β) is an inverse
gamma distribution with shape parameter α and scale param-
eter β. So for each measurement component and at each time
step, we have to estimate the triad {νi, σi, zi}. Concerning
the prior distributions of these parameters, νi and σi are con-
sidered static and zk,i inverse-gamma distributed.

In this application, two different heavy tailed scenarios
were considered: ν1 = ν2 = 2 and ν1 = ν2 = 1.5. In
both scenarios the following parametrization was used: σ2

1 =
100, σ2

2 = 0.001. We note that lower the parameter ν heav-
ier the tails of the noise distribution and so stronger outliers.
These parameters imply that in the Gaussian scenario (ν1 →
∞ and ν2 → ∞) the measurement noise covariance matrix

would be R = diag(100, 0.001), which will be used for com-
parison.

The initial state estimate was drawn from N (x̂0,Σx,0)
for each Monte Carlo trial, with x̂0 = [2000, 2000, 20, 20, 0, 0]
and Σx,k = diag(5 · 104, 5 · 104, 8, 8, 0.02, 0.02). We used 3
sigma-points/dimension so the method required M = 3N =
729 points. The unknown process covariance matrix was
initialized to 100 · Σv . We made 2000 independent Monte
Carlo runs with 100 scans per run and we used the root-mean
square error (RMSE) as the measure of performance. As the
process noise covariance matrix is constant we use all the
samples available in the covariance matching method (pro-
cess noise covariance estimation method). Concerning the
Monte Carlo method (measurement noise statistics parame-
ters estimation method), the particles were drawn from the
prior distributions: from U(1, 5) for νi, from U(0, 5 · σi)
for the estimation of σi and from IG(νi,p/2, 2/νi,p) for the
estimation of zk,i, where νi,p are the particles generated for
νi. We used Np = 500 particles.
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Fig. 2. Position RMSE for the robust Bayesian method and
the SQKF with known statistics for both Gaussian and GSM
scenarios, considering two cases: ν1 = ν2 = 2 (top) and
ν1 = ν2 = 1.5 (bottom).

Fig. 2 plots the RMSE of position estimates obtained with
different algorithms in two different scenarios: the first one
considers ν1 = ν2 = 2 and the second one ν1 = ν2 = 1.5.
The solid blue line plots the performance obtained with the
SQKF with a full knowledge of both the process noise co-
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variance matrix and the measurement GSM noise parameters.
The results obtained in this case are a reference of the ulti-
mate achievable performance with the robust Bayesian solu-
tion proposed in this paper.

The results obtained with the proposed method (dot-
dashed magenta line) are really encouraging. In this example,
the proposed filter is able to estimate the noise parame-
ters, and deals correctly with the impulsive behavior of the
measurement noise with limited performance degradation in
scenarios where other Gaussian filters give worse results:
dashed green and dotted black lines correspond to the perfor-
mance obtained with the SQKF considering Gaussian noise
with Σn = R and known Σv , and overestimated covariance
matrices 100 ·Σv and Σn = 10 ·R, respectively.

5. CONCLUSIONS

This paper presented a robust (adaptive) solution to the
Bayesian filtering problem for nonlinear state-space models
with Gaussian scale mixture (GSM) distributed measurement
noise, what has been proven to be a more appropriate repre-
sentation of the measurement than the standard Gaussian case
in many real–life systems.

The performance of the proposed method was validated
by computer simulation in a target tracking application. In
this scenario, we saw that the proposed method attains good
performance results dealing correctly with both outliers/im-
pulsive behaviors in the measurement and unknown process
and measurement noise statistics, while being computation-
ally affordable when compared to standard methods. We con-
sidered a Student-t noise distribution, but this solution can be
applied to any GSM noise distribution, providing a general
framework for the GSM noise context.

Even if the method’s performance was shown for a tar-
get tracking application, the proposed Bayesian solution is a
powerful tool to deal with outliers/glitches or unknown noise
environments in other localization applications such as inte-
grated navigation systems (i.e. coupling Global Navigation
Satellite Systems with inertial sensors) or indoor positioning
systems using wireless sensor networks.
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