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ABSTRACT

In this paper, there are two objectives: on one hand, we ex-

tend four conventional validity indices, namely the DI, the II,

the CH, and the GI, to four kernel-based validity indices, cor-

respondingly, the kDI, the kII, the kCH and the kGI; on the

other hand, we conduct a Monte-Carlo simulation to evalu-

ate and compare these validity indices. The numerical results

show that some kernel validity indices work significant better

than conventional ones and some of the validity indices work

poorly or do not work at all in our study.

1. INTRODUCTION

Clustering, also known as unsupervised learning, has been

a useful exploratory technique for decades in many fields,

such as image processing, data mining and artificial intelli-

gence [1], and in recent years, has benefited microarray gene

expression data analysis in genomic research [2]. The goal of

the clustering analysis is to group individual objects or sam-

ples in a population within which the objects are more simi-

lar to each other than those in other clusters. Although there

are many widely used clustering algorithms, for example, the

k-means [3], the hierarchical clustering (HC) [3], the fuzzy c-

means (FCM) [4] and so on, there is no existing guideline to

guarantee that one clustering algorithm, which works well in

one dataset, can perform also well in a different dataset. Even

the same algorithm with different parameter settings or differ-

ent initialization methods usually produce different clustering

results. Thus, the task of assessing the clustering algorithms

can be as important as the clustering algorithms themselves.

Since the unsupervised learning is conducted without

teacher, it is more difficult to assess than a supervised ap-

proach. The procedure for evaluating the results of a cluster-

ing algorithm is known as clustering validation and the metric

for clustering validation is known as clustering validity in-

dex [5, 6]. There are two objectives of clustering validation:

firstly, clustering validity indices are used to assess the cluster

results; secondly, clustering validity indices are also used as
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tools to determine the number of clusters in a given dataset.

In general terms, clustering validation can be classified based

on two different methodologies: based on the approaches

how to investigate cluster validity, there are three classes,

namely external criteria, internal criteria and relative crite-

ria [5, 6]; based on the methods how the validity indices are

calculated, clustering validation can be classified into three

classes. Class one includes cost-function based indices, class

two includes density-based indices and class three includes

geometric approaches [9]. Among these validity approaches,

we are more interested in the relative criterion and geometric

indices because of their simplicity and low computational

load. There are many validity indices, which belong to both

relative criterion and geometric indices, proposed to assess

clustering results, including the Dunn’s index (DI) [7], the

I-index (II) [8], the Calinski Harabasz (CH) index [10] and

the geometrical index (GI) [9]. The basic principle behind

these methods is to calculate the ratio of the intra-cluster

scatter to the inter-cluster separation. However, none of these

widely adopted methods can be claimed to work well for all

types of data and there is no comprehensive evaluation and

comparison study of these validity indices in the literature.

Recently, kernel-based clustering, which constructs a hy-

perplane to separate the linearly inseparable patterns, has at-

tracted a lot of attention. These linearly inseparable patterns

are nonlinearly transformed from a set of low-dimensional

space into a higher-dimensional feature space to be linear sep-

arable [11]. At the core of the kernel-based clustering lies the

difficulty of explicitly constructing the nonlinear mapping,

which is sometime infeasible; but now it can be overcome by

a kernel trick. The kernel trick is a way of mapping patterns

from a input space into a feature space without having to com-

pute the mapping explicitly, in the hope that the patterns will

gain meaningful linear structure in the feature space. How-

ever, to our best knowledge, the kernel-based clustering va-

lidity indices have not been investigated. It motivates us to

develop and evaluate the kernel-based clustering validity in-

dices.

Thus, the objectives of this paper become two-fold: on

one hand, we extend four conventional validity indices,
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namely the DI, the II, the CH, and the GI, to four kernel-

based validity indices, correspondingly, the kDI, the kII, the

kCH and the kGI; on the other hand, we conduct a Monte-

Carlo simulation using synthetic gene expression model [13].

Note that we develop these validity indices in order to make

the literature complete and give readers a relatively compre-

hensive view of the kernel validity indices. In the numerical

results, we will show that some of kernel validity indices

work significantly better than conventional ones and some of

validity indices work poorly or do not work at all.

The rest of this paper is organized as follows: Sec. 2 re-

views the validity indices and kernel method, Sec. 3 develops

the kernel validity indices based on the conventional ones and

Sec. 4 presents the method of the simulation and shows the

result comparisons. Finally, Sec. 5 concludes the paper.

2. REVIEW FOR VALIDITY INDICES AND KERNEL

METHOD

In this preliminary section, we review the validity indices and

kernel method separately.

2.1. Validity Indices

We list five validity indices which we are going to investigate.

All these validity indices belong to relative criteria category.

The basic principle behind these methods is to calculate the

ratio of the intra-cluster scatter to the inter-cluster separation.

Dunn’s index (DI): This index [7] is defined as a fraction,

which is written as

DI(K) = min
1≤i≤K

{

min
1≤j≤K

{

δ(Ci, Cj)
max1≤k≤K{∆(Ck)}

}}

, (1)

where δ(Ci, Cj) is the minimum distance between cluster i
and cluster j, ∆(Ck) is the largest intra-cluster separation of

cluster k. Large values of DI are supposed to represent good

clustering results and the K-cluster with maximum DI value

is supposed to be the true number of clusters.

I-index (II): The II [8] is written as

II(K) =

(

1

K
× E1

EK

×DK

)P

, (2)

where E1 =
∑

j ‖xj − u‖2 where u is the centroid of the

whole dataset, EK =
∑K

k=1

∑

j∈Ck
‖xj − uk‖2, DK =

maxKi,j ‖ui − uj‖2 and power P is constant, which is 2 in

our experiments. ui is the centroid of cluster i. Similar to

the DI, large values of the II are supposed to represent good

clustering results and the K-cluster with maximum II value is

supposed to be the true number of clusters.

Geometrical index (GI): The GI [9] is expressed as

GI(K) = max
1≤k≤K

{

(2
∑M

m=1

√
λmk)

2

min1≤j≤K ‖uk − uj‖2

}

, (3)

where M is the number of dimensions, λmk are the eigen-

values of the covariance matrix of the k-th cluster. Note that

the closest GI value to zero suggests the best number of clus-

ters. Different with the previous two indices, smaller value

of GI is supposed to represent good clustering result and the

K-cluster with minimum GI value is supposed to be the true

number of clusters.

Calinski Harabasz (CH) index: The CH [10] is given by

CH(K) =
trace(B)/(K − 1)

trace(W )/(n−K)
, (4)

where nk is the number of memberships in the cluster k and

n is the total number of the objects, and

trace(B) =
K
∑

k=1

nk‖uk − u‖2

trace(W ) =
K
∑

k=1

nk
∑

i=1

‖xi − uk‖2.

2.2. Kernel Method

Recently, kernel-based clustering, which constructs a hyper-

plane to separate the linearly inseparable patterns, has at-

tracted a lot of attention. These linearly inseparable patterns

are nonlinearly transformed from a set of low-dimensional

space into a higher-dimensional feature space to be linear

separable [11]. At the core of the kernel-based clustering

lies the difficulty of explicitly constructing the nonlinear

mapping, which is sometime infeasible; but now it can be

overcome by a kernel trick. The kernel trick is a way of map-

ping patterns from a input space into a feature space without

having to compute the mapping explicitly, in the hope that the

patterns will gain meaningful linear structure in the feature

space, mathematically expressed as

κ(xi,xj) = Φ(xi)
TΦ(xj), (5)

where (·)T is the transpose operator. Thus, a straightforward

way to transform the calculation of Euclidean distance in the

feature space into the kernel version is to use the kernel trick

as follows

Dκ
E(Φ(xi),Φ(xj)) = ‖Φ(xi)− Φ(xj)‖2 (6)

= ‖Φ(xi)‖2 + ‖Φ(xj)‖2 − 2Φ(xi)
TΦ(xj)

= κ(xi,xi) + κ(xj ,xj)− 2κ(xi,xj),

and the kernel version of modified Pearson correlation is

given by [12]

Sκ
P (Φ(xi),Φ(xj))

=
Φ(xi)

TΦ(xj)
√

Φ(xi)TΦ(xi)
√

Φ(xj)TΦ(xj)
(7)

=
κ(xi,xj)

√

κ(xi,xi)
√

κ(xj ,xj)
.
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3. KERNEL VALIDITY INDICES

In this section, we extend above validity indices to four

kernel-based validity indices, namely the kernel DI (kDI), the

kernel II (kII), the kernel GI (kGI) and the kernel CH (kCH).

Kernel DI (kDI): The kDI is given by

kDI(K) = min
1≤i≤K

{

min
1≤j≤K

{

δκ(Ci, Cj)
max1≤k≤K{∆κ(Ck)}

}}

,

(8)

where ∆κ(Ck) is the largest intra-cluster separation of clus-

ter k in the feature space, δκ(Ci, Cj) = minDκ
E(Ci, Cj) is the

minimum of kernel-based Euclidean distance between cluster

i and cluster j in the feature space. The kernel-based Eu-

clidean distance between cluster i and cluster j is given by

Dκ
E(u

Φ

i ,u
Φ

j ) = ‖ 1

ni

ni
∑

i=1

Φ(xi)−
1

nj

nj
∑

j=1

Φ(xj)‖2

=
1

n2

i

ni
∑

i=1

ni
∑

i′=1

κ(xi,xi′) +
1

n2

j

nj
∑

j=1

nj
∑

j′=1

κ(xj ,xj′) (9)

− 2

ninj

ni
∑

i=1

nj
∑

j=1

κ(xi,xj).

Kernel II (kII): This index is expressed by

kII(K) =

(

1

K
× Eκ

1

Eκ
K

×Dκ
K

)P

, (10)

where DK = minKi,j ‖uΦ

i −u
Φ

j ‖2, Eκ
1
=

∑

j ‖Φ(xj)−u
Φ‖2

and Eκ
K =

∑K

k=1

∑

j∈Ck
‖Φ(xj)− u

Φ

k ‖2, where

‖Φ(xj)− u
Φ‖2 = κ(xj ,xj)−

1

N

N
∑

i=1

κ(xj ,xi)

+
1

N2

∑

i

∑

i′

κ(xN
i=1

,xN
i′=1

).(11)

Kernel GI (kGI): The kGI can be easily obtained by

kGI(K) = max
1≤k≤K

{

(2
∑M

m=1

√
λmk)

2

min1≤j≤K ‖uΦ

k − u
Φ

j ‖2

}

. (12)

Kernel CH (kCH): The kCH is given by

CH(K) =
traceκ(B)/(K − 1)

traceκ(W )/(n−K)
, (13)

where

traceκ(B) =

K
∑

k=1

nk‖uΦ

k − u
Φ‖2

traceκ(W ) =
K
∑

k=1

nk
∑

i=1

‖Φ(xi)− u
Φ

k ‖2.
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Fig. 1. (a) RAND index for four clustering algorithms. (b),

(c) and (d) show the RCE of the number of clusters of all four

conventional validity indices and their kernel counterparts for

the clustering results of HC&KHC, FCM and k-means, re-

spectively

4. NUMERICAL RESULTS

In this section, we present the numerical comparison of both

conventional and kernel validity indices to validate four dif-

ferent clustering algorithms, namely k-means, HC, fuzzy c-

means and kernel HC (KHC). We employ complete linkage

for both hierarchical algorithms. To conduct a monte-carlo

simulation to obtain statistical steady results, we employ the

method in [13] to generate a number of synthetic gene expres-

sion datasets with 500 synthetic genes in each dataset and 24

samples for each gene. These 500 genes locate in K = 5 clus-

ters and each cluster has 100 members. The model of cyclic

gene expression is given by

xij = r+ [a+ br](r+ [a+ br] sin(2πj/8− ωi + cr), (14)

where xij is the expression value of the i-th gene at the

j-th time point, each instant of r is an independent ran-

dom number from the standard normal distribution N (0, 1),
a controls the magnitude of the sinusoid and it is fixed to

three here, b controls the random component added to the

magnitude, c controls the random component added to the
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Fig. 2. Index values of the kDI against the number of clusters

K in four noise levels, from low to high, corresponding to

parameter pairs PP6, PP8 and PP10.

phase and ωi is the phase shift of the i-th gene. ωi will

determine which cluster the gene i will be in. Since the

noise in this model is not additive, we have to couple b
and c to be a pair and raise the both values to change the

noise power. With the increasing of b and c, the noise

power increases. The paired parameters are listed as (b, c) ∈
{(0.1, 0.01), (0.3, 0.03), (0.5, 0.05), (0.7, 0.07), (0.9, 0.09),
(1.1, 0.11), (1.3, 0.13), (1.5, 0.15), (1.7, 0.17), (1.9, 0.19),
(2.1, 0.21), (2.3, 0.23), (2.5, 0.25)}, thus, there are 13 pa-

rameter pairs (PPs) from PP1 to PP13 representing 13 noise

levels from low to high. For each pair of parameters, we gen-

erate 1000 datasets, and subsequently, we get 1000 clustering

results for each clustering algorithm.

Since the clustering validity indices have to work in an un-

supervised situation, to ”validate” these validity indices, we

have to make use of the ground truth of the datasets, in this

case, which is the nature clustering including the number of

clusters and the membership of each cluster. In Fig. 1 (a), we

calculate the RAND index [14] for four clustering algorithms

based on the ground truth. It is worth noting that HC and

KHC have exact same results in our simulation. Another fact

worthy of note is that the k-means is the best algorithm out

of the four that we evaluate. We will make use of this fact to

”validate” the validity indices to show us which validity in-

dex would perform best in a statistical sense. It is logical to

deduce that the best index will also work well in the similar

type of dataset when the ground truth is not available. To il-

lustrate the effectiveness of validity indices, we compare the

validation results based on two experiments. On one hand, we

compare the rate of correct estimation (RCE) of the number
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Fig. 3. Index values of the kII against the number of clusters

K in four noise levels, from low to high, corresponding to

parameter pairs PP6, PP8 and PP10.

of clusters for all validity indices; on the other hand, to il-

lustrate how good the clustering algorithms are, we compare

the values of a given index for all clustering algorithms, the

largest value indicates best clustering expect that the GI and

the kGI are looking for smallest index values.

In Fig. 1 (b), (c) and (d), we show the RCE of the num-

ber of clusters of all four conventional validity indices and

their kernel counterparts for the clustering results of the

HC&KHC, the FCM and the k-means, respectively. Gener-

ally speaking, the kernel validity indices, which are shown

with solid lines, have better estimation performance than the

conventional ones, except the kGI. In this case, the GI, the

kGI and the II are the most inferior three indices while kDI,

kII and kCH are the most superior three indices. Let us look

closer at the kDI, the kII and the kCH: for the kDI, the per-

formance is moderate, not so good and not so bad. There are

always some estimation errors for HC&KHC in some low

noise cases where hundred percent data points are correctly

clustered. We can analyse the results together with the results

in Fig. 2, which depicts the error plots of index values of the

kDI against the number of clusters K in three noise levels,

from low to high, corresponding to parameter pairs PP6, PP8

and PP10. Fig. 2 (a), (b) and (c) illustrate both the means and

the standard deviations of the index values of the HC&KHC,

the FCM and the k-means, respectively. We can tell that the

estimation errors result in the large standard deviations.

Similarly, for the kII, we analyse the results in Fig. 1 to-

gether with the results in Fig. 3, which depicts the error plots

of index values of the kII against the number of clusters K in

three noise levels. There is an interesting discovery in Fig. 1:
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Fig. 4. Index values of the kCH against the number of clusters

K in four noise levels, from low to high, corresponding to

parameter pairs PP6, PP8 and PP10.

the k-means has been endorsed by RAND to be the best in

this case, while kII shows a contrary result that the RCE of

number of clusters for the k-means is poor, while the RCE for

the FCM is pretty good. We also notice that, at PP9, the RCE

for the FCM is quite high while the RCE for the k-means is

zero, but the fact is that the RAND of the k-means is higher

than that of the FCM. Note that in Fig. 3 (b) and (c), which

depict the index values of FCM and k-means, the index values

at K=5 are similarly around 5.08× 105 for both the FCM and

the k-means, but the index values of the k-means at K=19 and

20 are higher than 5.08× 105. It means that kII indicates that

the clustering results of the k-means with the number of clus-

ters 19 and 20 are better, which is obviously wrong. Based on

this, we can conclude that the kII is not reliable.

The results shown in Fig. 1 (b), (c) and (d) indicate that the

kCH has stable and superior performance in our simulation. It

can achieve high estimation performance until the parameter

pair PP7 corresponding to (b, c) of (1.3, 0.13). In Fig. 4, it is

worthy noting that the standard deviations are much smaller

than other indices. Thus, the kCH is the most reliable and

stable index out of the evaluated eight indices.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, we developed and presented four kernel validity

indices, namely the kDI, the kII, the kCH and the kGI from

their conventional counterparts, corresponding to the DI, the

II, the CH and the GI. We conducted a Monte-Carlo simula-

tion using synthetic gene expression model to evaluate the va-

lidity indices and compare their results in order to find the best

index which likely works well in the similar type of dataset

when the ground truth is not available. In the numerical re-

sults, we showed that the GI, the kGI and the II are the most

inferior three indices while the kDI, the kII and the kCH are

the most superior three indices. Among the most superior

three indices, the kDI has moderate performance, the kII is

found not to be reliable, and most importantly, the kCH is

the most reliable and stable index out of the evaluated eight

indices in our study.
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