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ABSTRACT

This paper derives causal reconstruction kernels which allow for

a consistent signal recovery of the past signal component from the

past signal samples only. Our approach is based on classical Hilbert

space methods of signal sampling and recovery. The causal recon-

struction kernels are obtained as the causal dual frame for a given

sequence of sampling functions. The proposed methodology is illus-

trated by a numerical example.

Index Terms— Causality, interpolation, sampling, signal recon-
struction, stationary sequences

1. INTRODUCTION

One cornerstone of modern signal processing and information the-
ory is the sampling theorem attributed to E. T. Whittaker, H. Nyquist,
V. A. Kotelnikov, and C. E. Shannon [1]. It essentially states that a
band-limited analog signal can be perfectly reconstructed from its
uniform samples taken at a rate which is at least twice of the signal
bandwidth. In later years, this result was extended in many different
direction (see, e.g., [2, 3, 4] and references therein). It is remarkable
that all of these sampling theorems are essentially non-causal, which
means that for a perfect reconstruction of the original signal x(t) at
a certain (time) point t all signal samples from the infinite past to
the infinite future are necessary. For many applications, e.g. in im-
age processing, this non-causality is not a drawback since usually all
signal samples are available at a certain moment and the signal (the
pixels) may be processed in any desired spatial direction. However,
in applications involving essentially infinite signal streams over time,
like audio-, speech- or communication signals, the causality of the
signal processing algorithms is a necessary property. Not only are
the future samples unaccessible but also should they intuitively have
no influence on the present and the past signal component. There-
fore, they should not be necessary for signal recovery anyway.

Against this background, it is somewhat surprising that there
seems to be no systematic attempt to obtain a consistent theory of
sampling and reconstruction under a causality constraint, similar to
the well developed non-causal theory. Recently the causality prob-
lem in signal reconstruction was addressed especially in the context
of spline interpolation [5] [6], [7], whereas in [8] techniques from es-
timation theory of stationary sequences were used to obtain a causal
reconstruction filter. Nevertheless, the reconstruction kernel in this
work was non-causal. Signal reconstruction with a causality con-
straint was investigated in the framework of mean-square optimiza-
tion and from a system-theoretic viewpoint in [9].
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The present paper will derive causal reconstruction kernels,
based on the classical approach of consistent signal recovery in
Hilbert spaces (see, e.g., [3]), and will characterize the subspace for
which a perfect signal recovery is possible.

2. SIGNAL MODEL AND PRELIMINARIES

Our subordinate signal space is L2(R), that is the Hilbert space of
square-integrable functions on the real axis R with the inner product
〈x, y〉L2(R) =

∫
R
x(t) y(t) dt. The Fourier transform of any func-

tion x ∈ L2(R) is defined as

x̂(ω) =
∫
R
x(t) e−iωt dt , ω ∈ R .

For any arbitrary positive constant a ∈ R, the translation operator

Sa : L2(R) → L2(R) is defined by (Sax)(t) = x(t − a) and
it is clear that (Sn

a x) = x(t − na) for every n ∈ Z. If S is a
closed subset of L2(R) then PS denotes the orthogonal projection
from L2(R) onto S. L2(R) may be decomposed into two closed
orthogonal subspaces:

L2
+(R) := {x ∈ L2(R) : x(t) = 0 for all t < 0}

L2
−(R) := {x ∈ L2(R) : x(t) = 0 for all t ≥ 0} ,

such that L2(R) = L2
+(R) ⊕ L2

−(R). The orthogonal projection
from L2(R) onto L2

−(R) will be denoted by P−.
For 1 ≤ p ≤ ∞ the common Lebesgue spaces on the unit circle
T := {z ∈ C : |z| = 1} are denoted by Lp(T). In particular, L2(T)
is a Hilbert space with the inner product

〈x, y〉L2(T) =
1

2π

∫ π

−π

x(eiθ) y(eiθ) dθ .

Any x ∈ L2(T) can be written as a Fourier series

x(eiθ) =
∑

n∈Z

x̂(n) einθ with x̂(n) =
1

2π

∫ π

−π

x(eiθ) e−inθ dθ ,

with the Fourier coefficients x̂(n). The closed subspace of all func-
tions for which the Fourier coefficients with negative index are zero
is denoted by L2

+(T) := {x ∈ L2(T) : x̂(n) = 0, ∀n < 0}. Every
x ∈ L2

+(T) can be identified with a function x from the Hardy space

H2 which has the form x(z) =
∑∞

n=0 x̂(n)z
n and which is analytic

for all z ∈ D := {z ∈ C : |z| < 1} [10]. The natural projection
L2(T) → H2 will be denoted by

P+ :
∑∞

n=−∞
x̂(n) einθ 7→∑∞

n=0 x̂(n) z
n .

The Laurent (or multiplication) operator MΦ : L2(T) → L2(T)
is defined by (MΦ x)(e

iθ) = Φ(eiθ)x(eiθ), where Φ ∈ L∞(T) is
called the symbol of MΦ. The concatenation of P+ and MΦ, i.e. the
mapping TΦ = P+ MΦ : H2 → H2 is called the Toeplitz operator

with symbol Φ.
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x(t)- h(t)
y(t) �? -
t = na

cn = y(na)

=
∫
h(τ)x(na− τ) dτ

Fig. 1. Linear filtering followed by an ideal sampling with period a.

3. SAMPLING SCHEME

A simple model for a practical sampling device comprises a pre-
filter with impulse response h followed by an ideal sampler [11], as
depicted in Fig. 1. The resultant signal samples can be written as
cn := 〈x, sn〉L2(R), where

sn(t) = (Sn
as)(t) = s(t− na) with s(t) := h(−t) . (1)

It is always assumed that h ∈ L2(R), but in a real world system
the linear filter will be causal, so that h ∈ L2

+(R) and consequently
s ∈ L2

−(R). The functions sn are called sampling functions, and the
space spanned by these functions

S := span{sn = Sn
as : n ∈ Z}

is called the sampling space. To simplify the presentation, it is al-
ways assumed that {sn}n∈Z forms a Riesz basis for S.

4. STATIONARY SEQUENCES

The sampling space S is spanned by the sequence s := {sn}n∈Z

in L2(R). Since s is generated by the unitary operator Sa as in
(1), it is easy to verify that s is a stationary sequence in L2(R) [8],
which means that 〈sn+k, sm+k〉 = 〈sn, sm〉 for all n,m, k ∈ Z.
As a consequence, the correlation function rs(n) := 〈sn, s0〉 has
the following spectral representation

rs(n) = 〈sn, s0〉L2(R) =
1

2π

∫ π

−π

e−inθ Φs(e
iθ) dθ , (2)

where Φs ∈ L1(T) is the spectral density of s, given by [8]

Φs(e
iθ) = 1

a

∑
n∈Z

∣∣ŝ
(
θ+2πn

a

)∣∣2

in terms of the Fourier transform ŝ of the generator s. Our assump-
tion that s forms a Riesz basis for S can be expressed conveniently
in terms of its spectral density [8, 12, 13]:

LEMMA 1: Let s = {sn}n∈Z be a stationary sequence in L2(R)
with spectral density Φs. Then s forms a Riesz basis for S if and

only if there exists two positive constants A,B such that

A ≤ Φs(e
iθ) ≤ B for almost all θ ∈ [−π, π) . (3)

For the following derivation, it is crucial to note (see, e.g., [14])
that the sampling space S is isometric isomorph to the Hilbert space
L2(T,Φs) of functions on T, equipped with the inner product

〈f, g〉L2(T,Φs)
=

1

2π

∫ π

−π

f(eiθ) g(eiθ)Φs(e
iθ) dθ .

The Hilbert space isomorphism is established by the linear mapping
Λs : S → L2(T,Φs) defined by

Λs : sn 7→ ϕ−n(e
iθ) := e−inθ for all n ∈ Z . (4)

Since s is assumed to be a Riesz basis for S, every x ∈ S has the
form x =

∑
n∈Z

an sn and can be identified with the function

ξ(eiθ) = (Λsx)(e
iθ) =

∑
n∈Z

an ϕ−n(e
iθ) =

∑
n∈Z

a−n einθ

in L2(T,Φs). Then it follows from (2) that for any x, y ∈ S the
relation 〈x, y〉L2(R) = 〈Λsx,Λsy〉L2(T,Φs) holds. In particular,
{sn}n∈Z is a Riesz basis for S if and only if {ϕn}n∈Z is a Riesz
basis for L2(T,Φs). Note also that because of (3), L2(T,Φs) is
isomorph to L2(T), i.e. L2(T,Φs) may be considered as L2(T)
equipped with an equivalent norm which satisfies

√
A ‖x‖L2(T) ≤ ‖x‖L2(T,Φs) ≤

√
B ‖x‖L2(T) , ∀x ∈ L2(T) .

5. CONSISTENT SIGNAL RECOVERY

The first subsection briefly reviews the well known non-causal re-
construction method (see, e.g., [3]), because the derivation of the
causal reconstruction kernels in Subsection 5.2 will follow a similar
reasoning.

5.1. Non-causal reconstruction

Let x ∈ L2(R) be a signal and assume that we have acquired all
signal samples cn = 〈x, sn〉 for n ∈ Z. Since s = {sn}n∈Z is
assumed to be a Riesz basis for the sampling space S, a signal re-
construction is given by

x̃(t) =
∑

n∈Z
〈x, sn〉σn(t) , (5)

wherein σ = {σn}n∈Z is the dual Riesz basis of s = {sn}n∈Z,
which is known to be bi-orthogonal to s, i.e. 〈σn, sn〉 = 1 for all
n ∈ Z and 〈σn, sm〉 = 0 for n 6= m. Moreover, it is known that

x̃ = argmin
s∈S

‖x− s‖ = PS x ,

i.e. the reconstructed signal x̃ is the best approximation of x in S,
and that one obtains a perfect reconstruction (i.e. x̃ = x) for all
signals x ∈ S. The above signal recovery was termed consistent

[3, 11] since a re-sampling of the reconstructed signal x̃ yields the
same signal samples as before, i.e. 〈x̃, sn〉 = cn = 〈x, sn〉, which
follows from the bi-orthogonality of σ and s.

Thus, in order to reconstruct (or approximate) the analog signal
xwe have to determine the dual Riesz basis σ of s. Even though this
derivation is well known (see, e.g., [3, 13]), we will sketch it here
based on our approach using the theory of stationary sequences.

The determination of the dual Riesz basis of {sn}n∈Z in S is
equivalent to the determination of the dual Riesz basis of {ϕn}n∈Z

in L2(T,Φs). To this end we consider the Hilbert space L2(T) with
the orthonormal basis en(e

iθ) = einθ , n ∈ Z, and the linear map-
ping F : L2(T) → L2(T,Φs) given by

(Fx)(eiθ) = x(eiθ) . (6)

Since Φs is assumed to satisfy (3), it is easy to see that F is bounded,
one-to-one, and onto. Moreover, we obviously have Fen = ϕn for
all n ∈ Z. Consequently, F is the so-called pre-frame operator

associated with {ϕn}n∈Z and its adjoint F∗ : L2(T,Φs) → L2(T)
is apparently

(F∗x)(eiθ) = (MΦs
x)(eiθ) = Φs(e

iθ)x(eiθ) .
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-{cn} g×
6∑

n δ(t− na)

- σ(t) -̃x(t) =
∑

n∈Z
cn σ(t− na)

Fig. 2. Non-causal signal reconstruction with linear filter σ.

This F∗ possesses a unique (left) inverse, i.e. there exists a mapping
G : L2(T) → L2(T,Φs) which satisfies GF∗x = x for every
x ∈ L2(T,Φs), and it is easy to verify that G is given by

(Gx)(eiθ) = (M1/Φs
x)(eiθ) =

1

Φs(eiθ)
x(eiθ) .

Now it is well known [13] that the dual Riesz basis {ψn}n∈Z of
{ϕn}n∈Z is given by

ψn(e
iθ) = (G en)(e

iθ) =
einθ

Φs(eiθ)
, n ∈ Z . (7)

By writing 1/Φs as a Fourier series, these dual functions can be
written as

ψn(e
iθ) =

∑

k∈Z

αk ϕn+k(e
iθ) with αk =

1

2π

∫ π

−π

e−ikθ

Φs(eiθ)
dθ.

Using again the isomorphism betweenL2(T,Φs) and S, one obtains
the desired dual Riesz basis of {sn}n∈Z as

σn = Λ−1
s
ψ−n =

∑

k∈Z

αk sn−k = Sn
a

(
∑

k∈Z

αk s−k

)
= Sn

aσ

for all n ∈ Z and where

σ(t) :=
∑

k∈Z
αk s−k(t) =

∑
k∈Z

αk s(t+ ka) (8)

is the generator of this dual Riesz basis. Note that {σn} has the same
shift-invariant structure as the given sequence of sampling functions
{sn}. Therefore, the signal reconstruction has a very simple im-
plementation as sketched in Fig. 2. The reconstructed signal x̃ is
obtained by sending a puls-stream modulated with the signal sam-
ples {cn} through a linear filter with impulse response σ. However,
it follows from (8) that σ /∈ L2

+(R) in general, i.e. σ is the impulse
response of a non-causal filter even if h is assumed to be causal.

5.2. Causal Reconstruction

In a causal setup, we assume that the sampling filter h in Fig.1 is
causal, i.e. that s ∈ L2

−(R), and we perform signal recovery at time
t = 0. At this moment, we have only received the signal compo-
nent x− := P−x ∈ L2

−(R) and sampled the signal up to t = 0.
Therefore we only know the past signal samples

cn = 〈x, sn〉 = 〈x−, sn〉 for n = 0,−1,−2, . . . . (9)

The second equality follows from the assumption that s ∈ L2
−(R).

Because then sn ∈ L2
−(R) for all n ≤ 0, and consequently

〈x, sn〉 = 〈x,P−sn〉 = 〈P−x, sn〉 = 〈x−, sn〉 for all n ≤ 0
since P− is self-adjoint. The subspace spanned by the past sampling
functions

S0 := span{sn : n = 0,−1,−2, . . . } ⊂ L2
−(R)

will be called the past sampling space.

Our aim is now to reconstruct (or approximate) the past signal
component x− based on the past signal samples (9). The formal
approach is the same as in the non-causal case. To this end, we
notice first that under the assumption that {sn}n∈Z is a Riesz basis
for S, the past sampling functions {sn}n≤0 will form a Riesz basis
for the past sampling space S0. The simple proof is omitted.

LEMMA 2: Let s = {sn}n∈Z be a stationary sequence in L2(R),
and let S and S0 be the corresponding sampling space and past

sampling space, respectively. If {sn}∞n=−∞ is a Riesz basis for S
then {sn}0n=−∞ is a Riesz basis for S0.

Consequently, a consistent reconstruction of x− based on the past
signal samples is given by

x̃−(t) =
∑0

n=−∞
〈x, sn〉 ςn(t) (10)

wherein {ςn}n≤0 is the dual Riesz basis of {sn}n≤0 for S0. Similar
to the non-causal case, (10) represents the orthogonal projection of
x onto S0, i.e.

x̃− = argmin
s∈S0

‖x− s‖ = PS0
x .

This implies that x̃− is the best approximation of x− in S0 and that
a perfect reconstruction of the past signal component x− is obtained
for all signals x for which x− = P−x ∈ S0. It remains to deter-
mine the dual Riesz basis {ςn}n≤0 of {sn}n≤0. This is done in the
following theorem.

THEOREM 3: Let s = {sn}n∈Z be a stationary sequence in L2(R)
which forms a Riesz basis for S = span{sn : n ∈ Z}, and let Φs

be the spectral density of s. Then s0 = {s−n}∞n=0 is a Riesz basis

for S0 and the corresponding dual Riesz basis {ς−n}∞n=0 is given by

ς−n =
∞∑

k=0

ψ̂n(k) s−k , n = 0, 1, 2, . . . (11)

with

ψ̂n(k) =
1

2π

∫ π

−π

ψn(e
iθ) e−ikθ dθ , n = 0, 1, 2, . . . (12)

and where the functions ψn ∈ H2 are given by

ψn(e
iθ) =

1

Φ+
s (eiθ)

P+

[
einθ

Φ−
s (eiθ)

]
, n = 0, 1, 2, . . . (13)

and wherein Φ+
s

and Φ−
s

are the spectral factors of Φs.

Proof: The proof follows the same ideas as in the non-causal
case. By the isomorphism between S and L2(T,Φs), it follows that
S0 is isomorph to L2

+(T,Φs) = span{ϕn : n = 0, 1, 2, . . . },
where the isomorphism is given by the mapping Λs in (4). There-
fore, the determination of the dual Riesz basis of {s−n}∞n=0 in S0 is
equivalent to the determination of the dual Riesz basis of {ϕn}∞n=0

in L2
+(T,Φs), with ϕn(e

iθ) = einθ .
To this end, we consider the mapping F : H2 → L2

+(T,Φs), de-
fined as in (6). Since s is a Riesz basis for S, the spectral density
Φs satisfies (3). It follows that F is bounded, invertible, and that
F en = ϕn for all n = 0, 1, 2, . . . , where {en(z) = zn}∞n=0 is the
standard orthonormal basis ofH2. Therefore F : H2 → L2

+(T,Φs)
is the pre-frame operator associated with {ϕn}∞n=0, and its adjoint
F∗ : L2

+(T,Φs) → H2 is given by

F∗ x = P+ MΦs
x = TΦs

x .

1176



Indeed, for every x ∈ H2 and every y ∈ L2
+(T,Φs) one has

〈Fx , y〉L2
+
(T,Φs)

= 〈x , MΦs
y〉L2(T) = 〈P+ x , MΦs

y〉L2(T)

= 〈x , P+ MΦs
y〉H2 .

Thus F∗ is the Toeplitz operator with symbol Φs, and we need to
find a (left) inverse G : H2 → L2

+(T,Φs) such that GF∗ x = x for
all x ∈ L2

+(T,Φs). To this end, let

Φs(e
iθ) = Φ+

s
(eiθ)Φ−

s
(eiθ) for all θ ∈ [−π, π) (14)

be the spectral factorization of Φs. Therein, Φ+
s

∈ H2 with

Φ+
s
(z) 6= 0 for all z ∈ D and Φ−

s
(z) = Φ+

s (1/z) are the spectral
factors of Φs. Such a factorization exists since Φs satisfies (3)
(see, e.g., [15]). Moreover, the properties of Φ+

s
and relation (3)

imply that Φ+
s

and 1/Φ+
s

are in H∞ = H2 ∩ L∞(T) and that
Φs(e

iθ) = |Φ+
s
(eiθ)|2 for all θ ∈ [−π, π). Based on these proper-

ties of Φ+
s

and Φ−
s

, it can be shown (see, e.g., [16, Lemma 2.3.5])
that the Toeplitz operator F∗ = TΦs

is invertible, with the inverse

G = T−1
Φs

= T
1/Φ+

s

T
1/Φ−

s

= M
1/Φ+

s

P+ M
1/Φ−

s

.

The dual Riesz basis {ψn}∞n=0 of {ϕn}∞n=0 is then be determined
by ψn = G en, which is equivalent to (13). Finally, every ψn ∈ H2

can be written as a Fourier series

ψn(e
iθ) =

∑∞

k=0 ψ̂n(k) e
ikθ =

∑∞

k=0 ψ̂n(k)ϕk(e
iθ)

with Fourier coefficients (12). By applying the isomorphism (4), one
obtains finally

ς−n = Λ−1
s
ψn =

∑∞

k=0 ψ̂n(k) Λ
−1
s
ϕk =

∑∞

k=0 ψ̂n(k) s−k ,

which is (11). �

As (11) shows, every vector ς−n, n = 0, 1, 2, . . . of the dual
basis is an element of S0 ⊂ L2

−(T), i.e. every ςn(t) is zero for
t > 0. Consequently, the reconstructed signal x̃−(t) ∈ S0 given by
(10) is also only supported in the past. A property which we expect
for a causal reconstruction method.

Although the formal derivation of the dual Riesz basis is very
similar for the non-causal and the causal case, the actual solution has
a very different structure. The non-causal dual Riesz basis {σn}n∈Z

is again a stationary sequence in L2(R). So every σn is a time trans-
late of a fixed function σ ∈ S: σn(t) = (Sn

a σ)(t) = σ(t − na).
Therefore, one only has to determine the generator σ in order to ob-
tain the dual Riesz basis {σn}. The causal dual {ςn}n≤0 does not
have such a simple structure, but every ς−n, n = 0, 1, 2, . . . has
to be determined separately (cf. Theorem 3), and there is generally
no simple recursive method to obtain ςn from its predecessor ςn−1.
However, it should be noted that for n → ∞, the part which is cut-
off by P+ in (13) becomes negligible. Then a comparison of (7) and
(13) shows that for a sufficiently large index n the causal dual ba-
sis element ς−n is almost equal to the non-causal dual basis element
σ−n (cf. also the example in Sect. 6).

For the determination of the causal dual basis, a spectral factor-
ization (14) is necessary, and we refer to [15] for a survey of various
suitable algorithms. This operation has a fairly complicated behav-
ior which makes it harder to investigate the analytic properties of the
causal reconstruction, e.g. the decay behavior of the Fourier coef-
ficient (12) which in turn influences the stability and robustness of
this causal reconstruction scheme. However, a detailed investigation
of the spectral factorization mapping may be found, e.g., in [17, 18].
It provides, for example, a relation between the decay of Fourier co-
efficients (12) and the smoothness of the spectral density Φs.

-5

1

-5

1

-5

1

n = 0  

n = 1  

 

n = 2  

time t

Fig. 3. Solid lines: causal reconstruction kernels ς−n(t) according
to Theorem 3. Dashed lines: truncated non-causal reconstruction
kernels σ−n(t) = σ(t+ n).

6. EXAMPLE: CAUSAL SPLINE RECONSTRUCTION

In the following we illustrate the above concepts for the impulse
response h of the sampling filter in Fig. 1 being a B-spline and for
a sampling period a normalized to 1. A B-spline of degree N is
defined recursively (see, e.g., [19]) by

βN (t) = (βN−1 ∗ β0)(t) =

∫

R

βN−1(τ)β0(t− τ) dτ

with β0(t) =

{
1 −1/2 ≤ t ≤ 1/2
0 otherwise

.

We set s(t) = h(−t) := βN (−t− (N + 1)/2), where the shift by
(N+1)/2 ensures that h is causal, and sn(t) := s(t−n). From the
recursive definition of βN , it follows that the spectral density Φs of
the sequence of sampling functions s = {sn}n∈Z is a trigonometric
polynomial of degree N given by

Φs(e
iθ) =

∑N
k=−N β2N+1(k) e−ikθ ,

and one can verify that Φs(e
iθ) > 0 for all θ ∈ [−π, π) such that

by the theorem of Fejér-Riesz [20] there exists a factorization (14)
with Φ+

s
(z) =

∑N
k=0 αk z

k. Moreover, [19] readily provides closed
form expressions for Φ−1

s
(z) and its poles. So that the factorization

(14) and the coefficients ψ̂n(k) in (12) are easily obtained.
In particular, we choose a B-spline of degree N = 2. For this case,
Fig. 3 compares the non-causal dual functions σ−n(t) = σ(t + n),
determined by (8), with the causal dual functions ς−n(t) of The-
orem 3, for n = 0, 1, 2. It shows that for small n, and for times t
close to zero, there is a substantial difference between the non-causal
and the causal dual functions. However, as n increases this differ-
ence becomes negligible, as expected from the discussion above.
Next we want to illustrate that the causal reconstruction (10) pro-
vides a perfect reconstruction from the past signal samples for sig-
nals in the past sampling space S0. To this end, we generated a signal
x ∈ S0 which has the form

x(t) =
∑

n≤0 xn s(t− n) =
∑

n≤0 xn β
2(−[t− n]− N+1

2
) .
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 original signal
 causal reconstruction
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time t

Fig. 4. Causal and non-causal signal reconstruction based on (10)
and (15), respectively. Note that the graph for the causal recovery
lies exactly over the graph of the original signal.

The coefficients {xn} were chosen at random and they were drawn
independently from a normal distribution. Then the past signal sam-
ples (9) were determined. Afterwards, the past signal component x−
was reconstructed in two different ways. First, signal recovery was
based on (10), using the causal reconstruction kernels ςn. Then this
result was compared with a reconstruction based on the truncated
non-causal reconstruction formula (5), i.e. with

x̃nc(t) =
∑∞

n=0 c−n σ(t+ n) , t ≤ 0 . (15)

Fig. 4 shows that (10) provides indeed a perfect reconstruction of
x ∈ S0 whereas the reconstruction with (15) yields significant er-
rors for times t close to zero. On the other hand, for time instances
earlier than approximately 3 sampling periods, almost no difference
in the signal reconstruction can be observed. Therefore (15), in con-
junction with a sufficiently large decision lag, is often used in prac-
tical applications for reconstruction. Nevertheless, if no or only a
small decision lag is acceptable, the causal reconstruction (10) pro-
vides much better results at a price of a slightly higher computational
complexity.

7. SUMMARY AND OUTLOOK

This paper derived causal reconstruction kernels for signal recovery
from generalized samples which satisfies the so-called the consis-
tency condition. In future works, the proposed framework will be
extended to more general U-invariant sampling schemes in atomic
subspaces [8, 21] and to other recovery techniques [3, 4]. Moreover,
the convergence behavior of the causal reconstruction series will be
investigated for signal space on which the classical non-causal inter-
polation techniques run into some fundamental limits [22].
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