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ABSTRACT

This paper presents recent advances in the application of
convolutive non-negative sparse coding (CNSC) to the prob-
lem of overlap detection in the context of conference meet-
ings and speaker diarization. CNSC is used to project a mixed
speaker signal onto separate speaker bases and hence to detect
intervals of competing speech. We present new energy ratio
and total energy features which give significant improvements
over our previous work. The system is assessed using a sub-
set of the AMI meeting corpus. We report results which are
comparable to the state of the art which support the potential
of a new approach to overlap detection. An analysis of sys-
tem performance highlights the importance of further work to
addresses weaknesses in detecting particularly short segments
of overlapping speech.

Index Terms— speech overlap detection, convolutive
non-negative sparse coding, speaker diarization

1. INTRODUCTION

Overlapping speech is known to degrade the performance of
speaker diarization systems [1]. Unfortuately its occurence is
typical in uncontrolled, spontaneous scenarios such as that of
conference meetings which have been the focus of the NIST
Rich Transcription (RT) evaluations since 20041. Accord-
ingly there is an increasing effort within the community to
develop new algorithms to detect and appropriately handle
overlapping speech. New algorithms are needed, first to de-
tect segments of overlap so that they can be removed from
data used in clustering and modelling and, second so that
segments of overlapping speech can be attributed to relevant
speakers. Even if there is contradictory evidence that the re-
moval of overlapping speech from data used in clustering and
modelling gives any significant reduction in the diarization
error rate (DER), detection is nonetheless a pre-cursor to at-
tribution which can significantly improve performance [2, 3].
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Overlap detection is an unsolved problem and the focus in this
paper.

There is little prior work in the open literature. Boakye et
al. [3, 4] investigated the use of various different features in
a hidden Markov model (HMM) framework for overlap de-
tection together with a post-processing step for attribution.
They show significant improvements in the diarization error
rate (DER) on a subset of the AMI corpus [5]. Huijbregts
et al. [6] report a detection approach which uses a model of
overlapping speech, trained on data localised around speaker
turns. They show minor improvements in the DER on a more
challenging NIST RT data.

Our own approach to overlap detection [7] is based on
convolutive, non-negative matrix factorisation (CNMF) [8]
with sparse coding constraints. The resulting convolutive
non-negative sparse coding (CNSC) approach combines the
advantages of mixed pattern decomposition due to non-
negative constraints and powerful representation and noise
robustness due to sparse coding. The acoustic signal is pro-
jected onto a set of speaker bases and the resulting base activa-
tions are used to detect overlapping speech. We achieved re-
sults comparable to the state-of-the-art systems in both over-
lap detection and attribution on RT corpora.

Recent work by Zelenak et al. [9, 10] reports an HMM
system using spatial features/localisation and prosodic fea-
tures in addition to conventional acoustic features. Significant
improvements in precision and recall are reported. Our par-
ticular interest, however, involves a single distant microphone
where no localisation features are available. The restriction to
a single microphone makes the problem more challenging but
solutions more versatile.

The performance of each approach described above is at
best modest and further work is needed to improve overlap
detection performance before attention can be turned toward
the development of effective attribution algorithms. The work
presented in this paper aims to identify the weaknesses in our
own overlap detection system as a guide to future work. Since
it contains a higher degree of spontaneous speech and more
frequent intervals of overlap this work was carried out using
AMI data. The contributions are two-fold. First, we report a
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new measure to detect ovelapping segments using CNSC ac-
tivations. Second, we report an analysis of overlap detection
performance which highlights weaknesses in detecting partic-
ularly short, but significant segments of overlapping speech.

The paper is organised as follows. In Section 2 we de-
scribe the CNSC algorithm which is the basis of our approach
to overlap detection described in Section 3. Experiments are
reported in Section 4 with a detailed analysis of system per-
formance. Our conclusions and ideas for further work are
given in Section 5.

2. CONVOLUTIVE NON-NEGATIVE
SPARSE CODING

Non-negative sparse coding (NSC) [11, 12] is an approach to
represent non-negative, multi-variate data as a linear combi-
nation of lower rank bases. Only additive combinations are
allowed in the representation due to the imposition of non-
negative constraints.

With NSC, a non-negative matrixD ∈ R
≥0
M×N is repre-

sented as:

D ≈ WH (1)

where,W ∈ R
≥0

M×R andH ∈ R
≥0

R×N form the bases and
base activations respectively. These are learnt such that the
regularised least square error between the original matrixand
the recomposition (̂D) is minimized:

(Ŵ , Ĥ) = argmin
W,H

‖D −WH‖2F + λ
∑

ij

Hij , (2)

where, λ is a regularization parameter which controls the
sparsity of the resulting representation.

This formulation, however, fails to capture the correlation
between adjacent frames in the data matrixD that is inherent
in speech signals. A convolutive variant, referred to as con-
volutive NSC (CNSC) [8] addresses this issue. The CNSC
decomposition takes the form:

D̂ ≈

P−1∑

p=0

Wp

p→

H , (3)

whereP is the convolution range. The operatorsp→. andp←.

are column shift operators which shiftp columns of the matrix
to the right and left respectively.

The learning of bases and activations together according
to Eq. 2 is a non-convex optimization problem and is solved
by iteratively updatingW andH until convergence using the
following update rules [13]:

Wp = Wp ⊙
D

p→

H
T

D̂
p→

H
T

(4)

H(p) = H ⊙
wT

p

p←

D

wT
p

p←

D̂ +λU

(5)

H =
1

P

P−1∑

p=0

H(p), (6)

whereU is anR×N unit matrix,⊙ is the Hadamard product
and where the division of matrices is performed element-wise.
After each update ofW , its columns are normalised to unit
vectors. This is an essential step in sparse coding since it
ensures thatW does not grow in an uncontrolled manner and
encourages sparse representation.

3. CNSC-BASED OVERLAP DETECTION

We show here how the CNSC algorithm can be readily ap-
plied to detect overlapping speech. CNSC bases are learnt
for individual speakers such that an interval of overlapping
speech can be decomposed into its underlying speaker com-
ponents, thereby providing a natural solution to overlap de-
tection. We first describe the CNSC-based decomposition of
speech signals and then introduce a new frame-level approach
to overlap detection.

3.1. Base learning and decomposition

CNSC basesW are learnt for each speaker in an audio doc-
ument using spectral magnitude features extracted from seg-
ments of pure (non-overlapping) speech. The base patterns
for each speaker are then concatenated together to create a
global basisWG that spans the spectral patterns of all speak-
ers. Spectral magnitude features across the whole audio doc-
ument, including overlapping segments, are then decomposed
at the frame level according to Eq. 2 withWG kept fixed and
onlyH being updated to minimise the optimisation criterion.

The activations inH for any given frame and any given
speaker therefore serve as an indication of that speaker’s ac-
tivity. While the activationsH and corresponding basisW
can be used to reconstruct or separate each speaker’s contri-
bution to overlapping segments, we use the activationsH di-
rectly to detect each speaker’s activity and hence segmentsof
overlapping speech.

3.2. Activation energy

Since the basesW are normalised, the sum of the activations
for any given speaker is strongly correlated to the signal en-
ergy from that particular speaker and therefore serves as an
indicator of that speaker’s activity during any given frame.

341



0

1

2

3

4

5

6

E
j(s

)

CNSC activations

 

 

Speaker 1
Speaker 2

0 1 2 3 4 5
Time (s)

Ground truth

Fig. 1: An illustration of the correlation between ground-truth
speaker activity (bottom) and CNSC activation energies (top)
for two speakers in a conversation containing an interval of
overlapping speech.

The energy for speakers during framej is estimated accord-
ing to:

Ej(s) =
∑

i∈Is

Hij (7)

whereIs represents the speaker-specific rows inH , or the
activations for speakers.

Figure 1 (top) illustrates the CNSC activation energy
against time for two speakers during a short interval from an
example meeting recording where the speaker energy is cal-
culated according to Eq. 7. Ground-truth reference speaker
activities are plotted below using the same colour profile for
corresponding speakers. The latter are plotted on different
scales solely for clarity. It is seen that the CNSC activation
energies have a clear potential as an indicator of speaker ac-
tivity and as can be seen from the figure, both the speakers
have high activation energy in the overlapping segment be-
tween 2 and 3 seconds.

3.3. Overlap detection

Speaker activation energies calculated as per Eq. 7 are
smoothed with a moving average filter and used to implement
a frame-based overlap detector. It is based on an energy ratio
ER for framej estimated as follows:

ERj =
Ej(ŝ2)

Ej(ŝ1)
(8)

whereŝi denotes the speaker with theith highest energy. The
energy ratio reflects the difference in activation energy for the
two speakers who are deemed to be most active in the given
frame. For overlapping segments we expect the ratio to be

nearer to unity while for non-overlapping segments the ratio
should be nearer to zero. Since overlapping speech segments
typically have more energy (they comprise speech from mul-
tiple speakers) we also estimate the total energyETj by sum-
ming Eq. 7 across all speakers and filter out frames with low
total energy. All frames with an energy ratioERj and to-
tal energyETj greater than empirically optimised thresholds
δER andδET are deemed to contain overlapping speech.

In our previous work [7], we had used variance of speaker
activation enegy differences in a frame as a measure for de-
tecting overlaps. However the energy ratio measure gives
much better results when used in conjunction with the total
energy threshold introduced in this work.

4. EXPERIMENTS

We report here an assessment of our new overlap detection
system using a subset of the AMI meeting corpus [5].

4.1. Oracle segmentation

In a practical speaker diarization scenario there is no speaker
specific training data other than that contained within the au-
dio recording itself. Consequently, the diarization system
hypothesis must itself be used to estimate regions of clean
speech for each speaker. Due to diarization errors, this speech
material is not entirely pure, but is the only data availablewith
which to learn speaker-specific base matrices for CNSC over-
lap detection. Any derived results are therefore dependenton
the performance on the underlying speaker diarization system
and thus the extraction of generalised results is troublesome.

In such scenarios it is typical to use oracle references to
marginalise the impact of systems elements that are not un-
der direct observation and thus to minimise their influence
on observed results. This approach is adopted here; we use
the reference transcription to identify intervals of pure speech
for each speaker. Accordingly, results presented in this paper
are independent of errors in an automatically derived speaker
segmentation or diarization output and thus the assessmentfo-
cuses on CNSC alone. While such an approach does not nec-
essarily give a reliable estimate of performance under prac-
tical conditions, we note that our previous work [7] showed
little difference in overlap detection performance using ref-
erence segmentations to those obtained with a real speaker
diarization system.

4.2. CNSC optimisation

We used a subset of six meeting recordings for development
and the same ten files for evaluation as used in previous work
by other authors [3]. In all cases we used only the single-
channel far-field microphone recordings. The list of used
meetings is displayed in Table 1. Both development and eval-
uation sets contain approximately 20% overlapped speech.
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Development set

TS3009d IS1009d EN2009c ES2014c
IN1016 IB4002

Test set

EN2003a EN2009b ES2008a ES2015d
IN1008 IN1012 IS1002c IS1003b
IS1008b TS3009c

Table 1: Meetings from the AMI evaluation dataset used for
development and testing

The CNSC algorithm was optimised on a small, artifi-
cal 2-speaker test set where overlapping speech was manu-
ally created and controlled in order to better understand sys-
tem behaviour and the influence of different parameterisa-
tions. Parameterisations reported here were subsequentlyre-
optimised on the AMI development data and thus different
to those reported previously [7]. The algorithm is applied
to magnitude spectra computed on 40 ms windows (cf. 20 ms
previously) with a window shift of 20 ms. CNSC speaker ac-
tiviations are calculated with speaker bases of sizeR = 35
(c.f. 50 previously), a convolutional range ofP = 4, and a
sparseness parameter ofλ = 0.05. The use of larger window
sizes captures more dicriminative speaker features whereas
the use of smaller bases leads to more effective modeling and
avoids overfitting.

4.3. Metrics and assessment

Overlap detection performance is assessed using precision
and recall statistics calculated at the frame level. Improve-
ments in speaker diarization require overlap detection with
high precision, whereas recall is usually of lower impor-
tance [3]. However, given that overlap detection can be ap-
plied in different processing steps of a typical speaker diariza-
tion system (namely overlap exclusion during clustering and
overlap attribution during segmentation), different operating
points with different precision and recall values may be bene-
ficial. Therefore, in addition to precise figures, we also show
the dynamic influence of the energy thresholdδET on the
trade-off between precision and recall performance. A higher
threshold will identify less overlap yielding lower recallbut
higher precision.

4.4. Results

The energy ratio threshold was tuned on the development set
and set toδER = 0.5 across all audio recordings whereas we
observed significantly better results whenδET is set dynam-
ically for each audio recording and according to a fractiontr
of the mean energy over the entire recording. Figure 2 shows
overlap detection performance in terms of precision and recall
as a function oftr (solid blue profile) and shows considerably
better performance than our previous system (dashed black
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Fig. 2: Overlap detection performance in terms of precision
and recall on the evaluation dataset.

profile) [7]. The new energy ratio and total energy features
thus give a marked improvement in system performance.

Boakye et al. [3] reported experiments with the same eval-
uation set and report precision/recall values of 0.55/0.40and
0.64/0.24. Our system achieves similar values of 0.55/0.31
and 0.64/0.23. The two sets of results are also illustrated
in Figure 2 with red triangles and blue crosses respectively.
Our system achieves comparable performance without a du-
ration model that is implicitly inherent in the HMM based
approaches.

In order to better understand the performance and weak-
ness of our new overlap detection system we analyzed per-
formance as a function of overlap segment duration. For this
work we arbitrarily chose the first operating point with preci-
sion/recall of 0.55/0.31. Figure 3 shows four histogram plots
for the test set which illustrate overlap detection performance
in terms of detected and missed overlap (top right and bot-
tom left) and recall (bottom right). For comparison reference
overlap histogram is also presented (top left). The distribution
of overlap segment durations show the total contribution (in
seconds) to the corpus for each bin (not the number of seg-
ments with the respective length, as would be the case in a
conventional histogram).

The plots show that the largest contribution to overlap
comes from shorter segments with durations between0.5 and
1.5 seconds. However, there are a suprising number of longer
overlap segments with durations in excess of4 seconds. The
missed overlap and recall histograms shows that short seg-
ments, which occur most frequently, are the least well de-
tected. Furthermore, the number of overlapping segments that
have a duration greater than the standard 0.25-second collar
used in the standard diarization error rate (DER) shows that
a significant penality will be incurred if segments of between
0.25 and 2 seconds in duration are not detected reliably. Fu-
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Fig. 3: Weighted length histograms for reference overlap seg-
ments, detected overlap, missed overlap and recall.

ture work should therefore focus on improving detection of
shorter segments and is likely to prove a significant challenge.

5. CONCLUSIONS

This paper reports our recent advances and system enhance-
ments in applying convolutive non-negative sparse coding
(CNSC) to the detection of overlapping speech in the con-
text of conference meetings and speaker diarization. CNSC
can be used to separate a potentially overlapping speech sig-
nal into single-speaker signals. We show how the resulting
CNSC base activations can be applied to detect overlapping
speech segments.

The new CNSC approach gives overlap detection results
which are comparable to a state-of-the-art HMM overlap de-
tection approach, when evaluated on the AMI meeting cor-
pus. Compared to an HMM approach, we use a rather simple
classifier which is not dependent on large amounts of training
data. Optimized parameterisations and new energy ratio and
total energy thresholds give significantly better performance
than our previous work and supports the potential for CNSC-
based overlap detection. A new analysis of overlap detection
performance highlights the need for continued work to im-
prove overlap detection particularly for shorter segmentsof
between 0.25 and 2 seconds in duration. A large part of these
short overlap segments are backchannel utterances, where one
speaker speaks in the middle of a longer utterance of another
speaker. However, very often it is not the case that there is
a real acoustic overlap between these two speakers. There-
fore, these segments can not be detected by overlap detection
systems which rely only acoustic features.

Our current work aims to integrate CNSC activations into
an HMM overlap detection framework to exploit the benefit of
duration modelling. This work is expected to improve overlap
detection performance for overlapping segments of especially

short and especially long duration. In addition, we experiment
with the inclusion of several different energy-related features,
since the introduction of the total energy threshold gave such
a big improvement in system performance. Future work in-
cludes the full integration of overlap detection into a regular
speaker diarization framework. In addition to continued work
to develop detection performance this will require new work
to optimise overlap attribution algorithms.
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