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ABSTRACT

We consider the problem of developing efficient sampling
schemes for multiband sparse signals. Previous results on
multicoset sampling implementations that lead to universal
sampling patterns (which guarantee perfect reconstruction),
are based on a set of appropriate interleaved analog to dig-
ital converters, all of them operating at the same sampling
frequency. In this paper we propose an alternative multirate
synchronous implementation of multicoset codes, that is, all
the analog to digital converters in the sampling scheme oper-
ate at different sampling frequencies, without need of intro-
ducing any delay. The interleaving is achieved through the
usage of different rates, whose sum is significantly lower than
the Nyquist rate of the multiband signal. To obtain universal
patterns the sampling matrix is formulated and analyzed. Ap-
propriate choices of the parameters, that is the block length
and the sampling rates, are also proposed.

Index Terms— Multicoset sampling, multirate sampling,
compressive sampling, multiband sparse signal, universal pat-
tern, Kruskal rank.

1. INTRODUCTION

Time-Interleaved Analog-to-Digital Converters (TI-ADCs)
have been proposed for the implementation of universal mul-
ticoset sampling patterns, which guarantee the recovery of
a multiband sparse signal (i.e., only a small number of fre-
quency subbands are occupied) from a small number of sam-
ples. Figure 1 shows the block diagram of this architecture,
where fs = 1/T denotes the Nyquist rate, p the number of
branches, τi are different delays and L is the length of the
block signal that has to be reconstructed. The locations of
the K active subbands are not known a priori., but making
usage of the sparsity of the signal and appropriately selecting
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Fig. 1. Block diagram of the most commonly used TI-ADC
system.

the delays and the block length, the multiband signal can be
reconstructed if p ≥ K [1, 2, 3].

The scheme proposed in [2] can also be implemented with
a TI-ADC architecture similar to that of Fig. 1, with a ran-
dom selection of the delays. The main drawback of random
selection approaches is that they require to have LADCs con-
stantly working. In contrast, fixed channel selection methods
allow to reduce the number of branches of the hardware sys-
tem p, to the number of active bands K, with the correspond-
ing reduction in area size and power consumption.

Thus, in [1], a fixed branch selection is assumed. The uni-
form sampling grid (at Nyquist rate) is divided into blocks of
L consecutive samples, and then only p out of theseL samples
are acquired. This can be implemented with the p branches of
the TI-ADC system in Fig. 1, using τi = ciT with integers
0 ≤ c0 < c1 < · · · < cp−1 ≤ L − 1 and equal sampling
frequencies fi = fs/L. Only certain selections of the p out-
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put channels lead to the reconstruction of the original signal,
although the authors of [1] do not provide a design criterion
for this; in [4], it is proven that any sampling pattern is uni-
versal if L is prime, but the issue of finding an appropriate set
{ck}p−1k=0 (a multicoset code) for any given value of L is stated
to be a combinatorial problem.

However, in [3], the matrix involved in the correspond-
ing reconstruction equation is deeply analyzed, which makes
possible to define a method for the design of universal mul-
ticoset sampling patterns, that is, patterns which guarantee
perfect reconstruction of the sparse multiband signal within
the framework of compressive sampling. Thus, p is selected
from the number of active bands, and delays are obtained as
consecutive numbers from an arithmetic progression of differ-
ence d coprime with the block length L. Difference d can be
either positive or negative, and smaller or greater than L. This
is the first systematic method proposed for this goal; previous
multicoset codes were either obtained by direct search [5] or
relied on the choice of a prime value of L [4].

In this paper we propose and analyze an alternative and
more flexible architecture to generate universal patterns: a
multirate synchronous sampling scheme with M branches,
as depicted in Figure 2. In this case we have a set of TI-
ADCs working synchronously and using different sampling
frequencies for each ADC (with the sum of of these different
sampling rates lower than the Nyquist rate); the design prob-
lem becomes the search for the sampling frequencies and the
block length that lead to universal sampling patterns. A sam-
pling scheme based on this architecture was first proposed
in [6], but the focus was on the development of a recon-
struction scheme for a set of different and arbitrarily chosen
sampling frequencies; no criterion was proposed on how to
choose the sampling frequencies. In [7, 8, 9] a multirate syn-
chronous sampling scheme with coprime subsampling factors
was also proposed, but not with a reconstruction objective but
for the estimation of the autocorrelation function of a wide-
sense stationary signal. Finally, a multirate sampling scheme
was also proposed in [10], but in this case delays between
ADCs were assumed, and the work was also focused on the
reconstruction procedure, not in the design of the sampling
scheme.

2. PROBLEM STATEMENT

As in [1], we assume a complex-valued K−sparse multiband
signal (the number of active bands is K) x(t), bandlimited to
[0, fs]. The upper bound B for the bandwidth of these bands
is known. The sampling stage is implemented as in Fig. 2.
Thus, for each block of L Nyquist-rate samples, p of them are
acquired, with indices 0 ≤ c0 < c1 < · · · < cp−1 ≤ L− 1.

Following [1], we define the sampling pattern C =
{ck}p−1k=0. The reconstruction of the multiband signal from
the acquired samples requires the selection of L, p and C

Fig. 2. Block diagram of a synchronous multirate system.

such that X(f) can be reconstructed based on

y(f) =
1

LT
Ax(f),

with

yk(f) = Xck

(
ej2πfT

)
, k = 0, . . . , p− 1

xl(f) = X

(
f +

l

LT

)
, l = 0, . . . , L− 1

and where A is a p× L Vandermonde matrix with elements

ak,l=exp

(
j
2π

L
ckl

)
, k = 0, ..., p−1, l = 0, ..., L−1. (1)

It is noted in [1] that x(f) can be recovered from y(f)
if L ≤ fs/B, p ≥ K and A has Kruskal-rank1 equal to p.
For given L and p, a sampling pattern C that results in a fully
Kruskal-rank A is termed universal [1].

In this work we will consider the case where these indices
are selected from the sampling positions provided by a set of
different uniform sampling sequences xi[n] at rates fs/Ni,
(i = 0 . . .M − 1): In other words, this means considering
indices of the form nNi, i = 0, · · · ,M − 1. Note that not
all the samples generated by the set of ADCs have to be used
for the reconstruction of the original signal. Our goal will
be obtaining the sampling frequencies, i.e. the subsampling
factors Ni and the block length that lead to a fully Kruskal-
rank matrix.

1The Kruskal- or K-rank of a matrix is the largest value of m such that
every subset of m columns of the matrix is linearly independent.
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3. ANALYSIS OF THE RECONSTRUCTION MATRIX
FOR A SYNCHRONOUS MULTIRATE SAMPLING

SCHEME

3.1. The simplest case: only one ADC

In this case the sampling pattern is simply obtained by ex-
tracting 1 out ofN1 samples in each block of lengthL = pN1.
This is an obvious selection for L, since in this way, we obtain
p different samples from each block [0, L− 1]:

ck = kN1, k = 0, ..., p− 1. (2)

Let us study the K-rank of the corresponding matrix A.
Our first result guarantees that A has not full K-rank (p); on
the contrary, its K-rank is always minimum:

Theorem 1. Let L = pN1 and let us define p samples in
[0, L− 1] as

ck = kN1 k = 0, ..., p− 1.

Then the corresponding p × L Vandermonde matrix A has
K-rank equal to 1.

Proof. Let us denote w = exp
(
2π
L j
)

the primitive L−root of
1. The (k+1)-th row of A contains the powers of the complex
number wk = exp

(
2π
L jck

)
. In this case this number is

wk = exp

(
2π

L
jkN1

)
= exp

(
2π

p
jk

)
.

Note that
wpk = 1 = w0

k.

This implies that A has two equal columns: the first one
(whose elements are w0

k = 1) and the (p+ 1)-th column
(whose elements are wpk = 1). Therefore the K-rank of A
is 1 < p.

Remark: This result asserts that there is no universal
sampling pattern of the kind (2) if the block size is L = pN1.
When L is multiple of p, only 1 active subband can be recon-
structed.

In the next Section we will study the existence of uni-
versal sampling patterns for a multirate synchronous system
with only two branches and the selection for the block length
L = N1N2.

3.2. The two ADCs case

We will now consider another approach, with L = N1N2.
Unlike the last case (L = pN1, where the p samples were
obtained as the output of 1 subsampler), in this case we will
consider the output of 2 converters: one which extracts the
samples of the kind kN2, k = 0, · · · , N1 − 1, and another
one which provides the samples mN1 m = 1, ..., N2 − 1.

The selection L = N1N2 coincides with the natural repeti-
tion cycle of the indices genrated by two converters working
synchronously at different rates.

We will assume that N1, N2 are coprime; this way, we
have a total amount of p = N1 +N2− 1 different samples (if
N1, N2 are not coprime, there are coincident samples: kN2 =
mN1 for some k < N1 andm < N2).Under this assumption,
we provide the next result on the K-rank of the Vandermonde
matrix A :

Theorem 2. Let L = N1N2 with 2 ≤ N1, N2 coprime num-
bers. Let us consider the N1 +N2 − 1 different samples

ck = kN2 k = 0, ..., N1 − 1 (3)
cm+N1

= mN1 m = 0, ..., N2 − 2. (4)

If we choose a subset {ci} of p samples extracted from these
ones, and p ≥ 4, then the K-rank of A is not maximum (p).

In particular, if we consider all theseN1+N2−1 samples,
then the K-rank of A is not maximum (p).

Proof. The complex numbers

wk = exp

(
2π

L
jck

)
, k = 0, ..., N1 +N2 − 2

are roots of 1. In fact, for k = 0, ..., N1−1, they areN1−roots
of 1, because

wk = exp

(
2π

L
jkN2

)
= exp

(
2π

N1
jk

)
⇒ wN1

k = 1.

And for k = N1, · · · , N1 +N2 − 2, they are N2−roots of 1

wm+N2 = exp

(
2π

L
jmN1

)
= exp

(
2π

N2
jm

)
⇒ wN2

k = 1.

This means that all wk are roots of the polynomial

Q (z) =
(
zN1 − 1

) (
zN2 − 1

)
= zN1+N2 − zN1 − zN2 + 1.

In other words, for any k = 0, ..., N1 +N2 − 2,

wN1+N2

k − wN1

k − w
N2

k + w0
k = 0.

From a matricial point of view, this means that there are
4 columns of A which are linearly dependent. In fact, recall
from Equation (1) that the (m+ 1)-th column of A contains
the m−th powers of wk, wmk ; hence, the last equation assures
that the (N1 +N2 + 1)-th column of A, its (N1 + 1)-th col-
umn, its (N2 + 1)-th column and its first column are linearly
dependent. Note that the index columnN1+N2+1 is smaller
than or equal to L because N1 +N2 < 2max (N1, N2) ≤ L.

The existence of 4 columns of A which are linearly de-
pendent implies that the K-rank is at most 3. Then if we ex-
tract a number of samples p ≥ 4 then the K-rank will not be
maximum. Moreover, if we choose all the samples, the K-
rank will not be maximum either: as p = N1 + N2 − 1 then
p ≥ 4 since p = N1 +N2 − 1 > 2N1 − 1 ≥ 3.
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Example: If L = 15 = 3·5, we generate 3 + 5 − 1 = 7
different samples: (0, 3, 6, 9, 12) and (7, 14). But the previ-
ous proof shows that any of those samples provides a root of
the polynomial

Q (z) =
(
z5 − 1

) (
z3 − 1

)
= z8 − z5 − z3 + 1

which means that the 7×15 matrix A has 4 linearly dependent
columns: the ones indexed by 0, 3, 5, 8. This means that the
K-rank at maximum is 3. The same holds if we extract p ≥ 4
out of those 7 samples: the K-rank of the corresponding p×15
matrix will be at most 3.

Remark: We have proven that the synchronous sampling
for L =N1N2 (N1, N2 coprime) yieldsN1+N2−1 different
samples, but if we extract from these a pattern {ck} of more
than 3 samples, the K-rank will never be maximum. Thus,
the unique solution for the synchronous sampling is just to
consider p =1,2 or 3 samples. But notice that, even for that
case, nothing assures that the maximum K-rank (p) will be
reached.

It would be nice to guarantee that, by taking just p = 3
samples we would obtain K-rank equal to 3. But the following
result assures that it is not possible either, if N1, N2 > 2:

Theorem 3. Let L = N1N2 with N1, N2 coprime.

1. If we just extract p = 3 different samples (say, 0, kN1

and mN2) then the K-rank is not maximum (3)

2. The K-rank is not maximum either, when we extract 3
samples of the kind kN1, mN2 and m′N2 (being N1 <
N2).

3. If N1, N2 > 2, then the K-rank is not maximum either,
when we extract 3 samples of the kind kN1, k

′N1 and
mN2.

Proof. 1. Let us study the case of p = 3 different samples:
0, kN1 and mN2. The matrix A has dimensions 3×L.
We now show that not any 3×3 submatrix of order 3 of
A is invertible: in fact, if N1 = min (N1, N2) then the
submatrix built with the 3 columns indexed by 0, N1,
2N1 is 1 1 1

1 wkN
2
1 w2kN2

1

1 wmN2N1 w2mN2N1

=

 1 1 1

1 wkN
2
1 w2kN2

1

1 1 1


which obviously does not have rank 3. We have only
used that wN1N2 = wL = 1 and the fact that 2N1 < L
which is true because N2 > N1 ≥ 2 so L = N2N1 >
2N1.

2. If N1 = min (N1, N2) , the same happens if we choose
different samples kN1, mN2 andm′N2 : the same sub-
matrix, built with the 3 columns indexed by 0, N1, 2N1,

has not maximum rank either: 1 wkN
2
1 w2kN2

1

1 wmN2N1 w2mN2N1

1 wm
′N2N1 w2m′N2N1

=

 1 wkN
2
1 w2kN2

1

1 1 1
1 1 1

.
3. Let us finally consider the case kN1, k

′N1 and mN2:
the columns indexed by 0, N2 and 2N2 would give a
3× 3 matrix with the first and second rows filled by 1’s
(hence, not invertible): 1 wkN1N2 w2kN1N2

1 wk
′N1N2 w2k′N1N2

1 wmN
2
2 w2mN2

2

=

 1 1 1
1 1 1

1 wmN
2
2 w2mN2

2

.
Note that in this case the index of the last column, 2N2

is smaller than L because 2N2 < N1N2 = L.

Hence for L = N1N2 with coprime N1, N2 > 2 the K-
rank is at maximum 2.

Finally let us consider the case L = 2N2 = 2N with N
odd. Fortunately, the following result assures that it is possi-
ble to reach maximum K-rank with p = 3 samples:

Theorem 4. Let L = 2N with N an odd prime, and let us
consider an odd number 1 ≤ m < N. Then the sampling pat-
tern N −m,N,N +m, is universal, since it yields maximum
K-rank (3).

Proof. Any 3× 3 submatrix of A is of the form w(N−m)k w(N−m)k′ w(N−m)k′′

wNk wNk
′

wNk′′

w(N+m)k w(N+m)k′ w(N+m)k′′

 .

We will prove that this submatrix is invertible for any 0 ≤
k < k′ < k′′ ≤ L− 1. By extracting the factors

w(N−m)k, w(N−m)k′ , w(N−m)k′′

respectively, from the first, second and third column, its rank
is the same as the rank of 1 1 1

wmk wmk
′

wmk′′

w2mk w2k′ w2mk′′

 .

The latter matrix is a Vandermonde matrix of the numbers
wmk, wmk

′
, wmk′′. It is invertible if and only if those 3 num-

bers are different. But if it happened to be wmk = wmk
′
, then

mk = mk′ mod L, say, m (k − k′) = 2Nr, r ∈ Z. As m is
odd, we have that

m ((k − k′) /2) = Nr, r ∈ Z.

BeingN prime,N must be either a divisor ofm (which is im-
possible) or a divisor of (k − k′) /2 < N. The unique chance
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is that (k − k′) /2 = 0, leading to k = k′ which is a con-
tradiction, because k < k′ by hypothesis. The contradiction
comes from the assumption that the submatrix can be singu-
lar. Hence, any submatrix of order 3 is nonsingular, and A
has maximum rank (3).

Examples:

• An easy way to obtain the maximum K-rank is by tak-
ing L = 6 = 2·3. As 3 is prime, we can just extract 3
samples: 3 − 1, 3, 3 + 1 (say, the samples indexed as
2, 3, 4). This method is equivalent to applying 2 syn-
chronous samplers in blocks of length L = 6: a sub-
sampler takes 1 out of 2 samples (providing the samples
indexed 0, 2, 4) and the other one picks 1 out of 3 sam-
ples (providing the ones indexed 0, 3). If each one dis-
cards its first sample, we just extract the sampling pat-
tern 2, 3, 4. Our contribution here guarantees that those
3 samples are sufficient for reconstructing p = 3 bands.

• Another example: for L = 10 we can consider sam-
pling pattern 2, 5, 8, or the sampling pattern 4, 5, 6.
Each one guarantees the reconstruction of 3 subbands.

In summary, we provide an easy way to obtain 3 bands of
sparse multiband signals. It suffices to take blocks of length
L = 6, or in the general case, blocks of length L = 2N ≥ 6
(with N prime) and choose 3 samples as stated in Theorem
4. However, no more than 3 subbands can be reconstructed
when taking L = N1N2, as we have already proven.

4. CONCLUSIONS

We have analyzed the reconstruction problem of sparse multi-
band signals when using a synchronous multirate sampling
scheme. For the simplest case of using only one ADC at rate
fs/N1, if the block length is a multiple of the subsampling
factor N1 we demonstrate that only 1 subband can be recov-
ered. On the other hand, when using two synchronous con-
verters with different sampling rates and the block length is
obtained as the product of the two coprime subsampling fac-
tors, we conclude that we can reconstruct at most 3 subbands,
regardless of using a great number of samples. Moreover, the
number of recovered subbands can be even smaller (equal to
2 or 1). In order to overcome this problem, we propose a
new selection of the block length that leads to a sampling pat-
tern which guarantees the reconstruction of any 3 subbands.
As a further reseacrh, new selections of the block length as
a function of the subsampling factors have to be proposed
and studied, in order to guarantee that any number of active
bands in the multiband signal can be reconstructed from the
sub-Nyquist pattern generated with a synchronous multirate
sampling scheme.
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