
“ASKWIKI”: SHALLOW SEMANTIC PROCESSING TO QUERY WIKIPEDIA

Felix Burkhardt and Jianshen Zhou

Deutsche Telekom Laboratories, Berlin, Germany
[Felix.Burkhardt | Jianshen.Zhou] @telekom.de

ABSTRACT
We describe an application to query Wikipedia with a voice
interface on a mobile device, i.e. smart phone or tablet com-
puter. The aim was to develop a so-called App that installs
easily on an android phone and does not need large vocabu-
laries. It can be used to either answer questions directly, if
the information is contained in a table or matches some key-
word syntax (like birth place), or get access to an article’s
sub chapter. An evaluation based on 25 test users showed the
feasibility of the approach.

Index Terms— Wikipedia semantic modeling natural
language understanding

1. INTRODUCTION

This article describes a so-called App named “AskWiki”; an
application to query the German Wikipedia1 with a voice in-
terface in a mobile context, i.e. with a small mobile hand
held device such as an Android based smart phone or tablet
computer.

Besides providing for a textual interface, the in- and
output can be given acoustically by using the build-in au-
tomatic Speech recognition (ASR) and Text-to-Speech syn-
thesis (TTS) capabilities provided by the Android operating
system. It is possible to query the system with natural lan-
guage, i.e. words that don’t carry semantic information are
detected, although a query consisting only of the target key-
words gets handled much faster by the system because the
search space is smaller.

The idea for this application was motivated by the wish
to access Wikipedia knowledge hands- and eyes-free, i.e. in-
put as well as output should be given acoustically. A further
constraint was that it should run completely on a mobile hand
held device as a small, easy to download application without
the need to operate a server. Application scenarios for this ap-
proach encompass, besides offering tourist information, the
general advantage of accessing lexical information anytime
anywhere, for example to submit queries for other movies fea-
turing the main actor on the way home from a cinema visit.

We therefore looked for a solution that omits the use of
large vocabularies as much as possible. The only vocabular-

1http://de.wikipedia.org

Fig. 1. Screen shots of the graphical user interface. a) while
searching, b) displaying the result

ies used in the current version are a short list of stop words
and a set of synonym words and related concepts. No onto-
logical knowledge is used, but the answer is simply found by
repetitive trials to retrieve an article from Wikipedia based on
the search words.

This article is structured in the following way. Section 2
gives a short review on existing work from the literature. The
following section 3 introduces AskWiki, explains the general
approach and describes the algorithm to query Wikipedia. In
Section 4, the semantic model of a natural language query
mechanism is explained. Section 5 introduces the structure
of an article. Section 7 describes the results gained from a
user field test, Finally, in Section 8 we draw conclusions and
discuss some possible future work.

2. LITERATURE REVIEW

The Wikipedia open domain lexicon was created by Jimbo
Wales and Larry Sanger in 2001, its origins date from 1995.
It is a collaboratively created encyclopedia based on the Wiki

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 350



content management framework introduced by Ward Cun-
ningham in 1995. The Wiki framework used by Wikipedia
is called MediaWiki, a Wiki software especially designed by
the Wikipedia community.

In order to extract structured information from Wikipedia
content, three approaches are possible.

• Add semantic tags directly to the Wikipedia content,
e.g. [1].

• Extract structured information from Wikipedia and
store as semantic data, e.g. formatted in a RDF triple
store [2].

• Interface Wikipedia directly and gather information “on
the fly”, as done by the approach described in this arti-
cle or in [3] and [4].

Approaches to enrich Wiki content with semantic annota-
tion represented as RDF triples exist since longer time. In the
case of [5], not only a syntax to describe RDF triples is de-
scribed, but a Wiki browser including ontology visualization
gets introduced. This allows queries like “Give me all movies
from the 60ies with Italian directors”.

For the interpretation of queries in a Question Answering
application, in a first step the words must be processed by
a natural language interpreting module. Such frameworks
require large vocabularies and have a large footprint with
respect to hardware resources and computing power. [4]
use Google search and WordNet as additional information
sources. In [1], categories, typed links and attributes are used
to model a semantic structure between the Wikipedia articles.

DBPedia 2 is an international project to extract structured
information from Wikipedia and to make this information
available on the Web. Most of the articles described in DBPe-
dia are classified in a consistent ontology. A query interface
is realized in SPARQL3 and can be accessed by several
SPARQL engines. Also, several visual interfaces exist to the
DBPedia data e.g. GFacet 4 or Fluidops5. The data also is
used in numerous other databases as part of the linked data
project6.

Accessing DBPedia data in a mobile context has been de-
scribed by [6]. Based on the current location of the user,
nearby things described in DBPedia are presented and can
be used as starting points for further exploration, e.g. in a
tourist guide scenario. In contrast to this, the work described
here simply concentrates on presenting the user with the most
important information extracted from Wikipedia because dis-
plays are usually small in mobile gadgets, but does not take
the current location into consideration.

2http://dbpedia.org/
3http://www.w3.org/TR/rdf-sparql-query/
4http://www.visualdataweb.org/gfacet
5http://iwb.fluidops.com
6http://linkeddata.org/

Virtually all approaches to add semantics to the Wikipedia
content use RDF, the Resource Description Framework, as
an underlying syntax to express semantic triples of subject,
predicate and object.

Unlike [1], the approach described here does not require
a modification to the Wikipedia content, but operates directly
on the article sources. Semantic links are not yet interpreted,
i.e. questions like “What is the capital of England” can only
be answered if the answer appears in the article about Eng-
land, but not via a link referral.

Some authors used the Wikipedia in Question Answering
systems to tackle the TREC and CLEF challenges, e.g. [3] or
[4], although they did not use the content to answer the ques-
tions directly, but to select the most probable answer from a
set of possible candidates by comparison with the Wikipedia
content.

3. THE “ASKWIKI” APP

Wikipedia information as such is not stored in a formally
structured or machine readable content, but authors write
texts that follow loose guidelines and suggestions. Although
Wikipedia articles are not written with a formal syntax, they
contain structured information by info boxes which use a
template mechanism, images depicting the articles topic,
categorization of the article, links to external web pages,
intra-wiki links to other articles and inter-language links to
articles about the same topic in different language.

The problem one encounters when extracting this infor-
mation is that there is no formal syntax Wikipedia authors
must follow when editing such information. We tackled this
by focusing on the values in tables on the one hand and on the
importance of the first sentence of a sub chapter on the other
hand.

The aim of the AskWiki application is partly to provide
question answering and partly to facilitate search in a large
Wikipedia article with a small and limited device by retrieving
the crucial information as dense as possible.

A screen shot of the GUI is shown in Figure 1. After
a search query was entered by the user, the current search
trials to Wikipedia get displayed (part a). The search can be
interrupted if the N-Best results get noticeable worse.

When an article was found, either the value of the cor-
responding table cell or the first sentence of a sub chapter is
presented as an answer (part b). By clicking the buttons at the
bottom, a picture or more information can be viewed. Also a
direct link to the Wikipedia article is provided.

In order to match the feature word of the query and the
table entry or sub chapter title respectively, a list of synonyms
and related concepts is given as a vocabulary which can be
edited and extended by the user. Like this, the answer to the
query Where is Trondheim located? results in the first sen-
tence of the sub chapter about the geography of Trondheim.

351



Fig. 2. Tokenization of an input phrase.

4. SEMANTIC MODEL

We model a query as consisting of tokens that might belong
to up to five categories, see Figure 2 for an example.

• Stop words can be disregarded without losing informa-
tion. They are identified by a vocabulary look up. From
our experience, in German a short list of 20 to 50 entries
containing the most frequently used words in questions
is sufficient.

• Feature names can be used to query directly for a fea-
ture of the target article, e.g. the birth date of a per-
son or the language spoken in a Country. Note that sub
chapters are also modeled as features. This makes it
possible to query directly for a sub chapter of an arti-
cle, e.g. “north wing castle Gottorf ”.

• A specifier can be used to distinguish between ambigu-
ous named entities, e.g. the name ”Nashville” might
mean the town or the movie by Robert Altman, for
common names like in German “Klaus Müller” there
are many different persons described in Wikipedia who
might be distinguished by their profession.

• The target must exactly match the title of a Wikipedia
article, even in capitalization. In contrast to specifier
and feature, the target might be a multi-word sequence.

• Ambiguous words might be stop words but also might
be part of a named entity. Examples are the words
“von” (German for “of” and possibly part of a named
entity) or “the”. They are included in the search process
in a later stage.

In Figure 2, an example of a query consisting of all possi-
ble parts is depicted. Note that the token “the” is ambiguous
as it plays two roles, the first one is a stop word and must
be ignored, the second is part of the article title and must be
preserved and set in lowercase.

The grammar for a query is given in EBNF (extended
Backus-Naur form) in the following lines.

< query > :=< ftFrntQry > | < ftBckQry >;

< ftFrntQry > := [< feature >] < spcfdTarget >;

< ftBckQry > :=< spcfdTarget > [< feature >];

< spcfdTarget > := [< spcfr >] < target >;

< target > :=< wrdseq > ∗;
< feature > :=< wrdseq >;

< spcfr > :=< wrdseq >;

< wrdseq > := [< stpwrds > ∗]token[< stpwrds > ∗];
< stpwrds > :=< stpword > | < ambig − word >;

< stpword > := “who”|“where”|“and”|“or”...;
< ambig − word > := “the”|“of”...;

< token > := [A− Za− z]∗! =< stpwrds >;

As described in Section 3, the program tries to find a
match for a target article in Wikipedia for a given query by re-
moving some words and changing the capitalization of other
words. Because each trial results in a network connection at-
tempt to Wikipedia, we can not try too many variants because
the reaction time of the program is a critical issue in a real
world scenario.

The feature can be in front of the target words (“when
was Einstein born?”) as well as behind (“birthday of Ein-
stein?”). The specifier must be in front of the target (“the
movie Nashville?”), i.e. “Nashville the movie?” would not be
recognized.

In contrast to specifier and feature, the target may consist
of several words (“Pirates of the Caribbean”). Stop words
may occur everywhere in the query, they will simply be
deleted.

Fig. 3. Model of an article.

5. DATA MODEL AND EXTRACTION

In Figure 3, the data model of the implementation is depicted.
An article has a title, a description, optionally a picture, a set
of categories and a set of features as well as sub chapters, each

352



with a title and content. The description gets loaded by pars-
ing all text before the first chapter headline. A preprocessing
filter executing a set of pattern matching rules is used to fil-
ter out all sorts of Wikipedia Markup Language, HTML and
other markup that can not be synthesized by a speech synthe-
sizer in a meaningful way.

There is no formal syntax to mark an articles about per-
sons, but if birth- and/or death dates and places are detected
they get extracted by the pattern matching algorithm. Addi-
tionally, for all tables, the text in the first column cell for each
row is taken as a feature name and all remaining text in the
row as the value.

All content-lines starting with a section heading mark the
beginning of a sub chapter. Parts with a header but missing
content are treated as super chapters and their headers get ap-
pended to the following chapter headers. Take for example
the sub chapter “north wing” for “castle Gottorf ” with the su-
per header “buildings”, which gets saved as “buildings north
wing” during the parse.

Similarly the chapter hierarchy is still visible although it
is not really preserved. Because parts get treated in the fol-
lowing just like features, they can be used to search directly
for information described in a sub chapter of a Wikipedia ar-
ticle. In fact, this is the only way to access this information
from within the AskWiki application. The feature matching
algorithm matches whole words, i.e. in order to get the chap-
ter “passenger elevators” of the article about the Eiffel tower
it is sufficient to say either “passenger” or “elevators”.

6. SEARCH STRATEGY

The Google speech recognizer returns only lowercase tokens.
Because the Wikipedia API7 is very strict when matching ar-
ticle titles, all sorts of combinations regarding capitalization
and hyphenation have to be tried out until an article gets re-
turned, the article title is set as a title / specifier and the re-
maining word (at most the first or last word is used as a fea-
ture, see section 4) as feature description.

The following searches are run until an article is found for
each of the N-Best recognition results.

1. search original query

2. search variants of original query

3. search variants of query without stop words

4. search variants while first word is feature

5. search variants while last word is feature

6. search variants while first word is feature keeping am-
biguous word

7http://en.wikipedia.org/w/api.php

7. search variants while last word is feature keeping am-
biguous words

8. return no result

Each search consists of the following search variants.

1. try capitalization. e.g. “Albert Einstein”

2. try first word as specifier, e.g. “Physicist Einstein”

3. try to add hyphens, e.g. “rhein-neckar-zeitung”

4. try uppercase, e.g. “BMW”

5. try named entity capitalization, e.g. “Werner von
Siemens”

Some of the variants exclude each other, for example all
uppercase gets only tried if the string contains only one word
whereas hyphenation does only make sense with multiple
words. We carry out the searches in descending order of
complexity and probability, so that less complex and more
probable queries get answered faster than complex and rare
questions.

Each query might lead to up about 40 Wikipedia API calls
per N-best result and the user might have to wait for the an-
swer, depending on network performance and query complex-
ity, for up to approximately 10 seconds which is about the
longest time acceptable for such an application. We did not
include spelling variants or stemmers because this would pro-
long the execution time excessively.

Fig. 4. Some parts of the user’s query get filtered.

Up until now we implemented only one automatically
inferred information because it appeared often in the test
queries. The question “how old is X” can be answered for
persons, cities, companies or countries and the like because a
feature “age” is automatically added if features like “born”,
“founded” or “built” are encountered.

7. EVALUATION

During the development of AskWiki we conducted a field
trial in order to test the usefulness of the App. 25 users se-
lected randomly from the Berlin population were paid to use
AskWiki for one week in their daily life and report their ex-
periences. As part of the reports, they send us log files of

353



Fig. 5. Results of the evaluation.

the App containing the queries that were recognized by the
Google speech recognizer (ASR). Figure 5 gives an overview
of the outcomes. We collected 1052 queries and labeled them
manually with the following categories.

• The search was aborted (24,4 %) by the user, which
means probably that the ASR result was wrong.

• In most of the cases (43,16 %), the answer is correct
when the App gets tuned, i.e. sometimes an acronym
or synonym had to be added to the vocabulary.

• In 11.4 % of the cases, the ASR result was obviously
wrong, i.e. no recognizable question could be detected.

• In 19.58 %, the answer was wrong or could not be de-
tected.

• Only 1.43 % were queries for sub chapters.

This means, given a correct speech recognition result, the cor-
rect answer could be found in 68.79 % of the cases with a
failure rate of 31.21 %.

At the time of writing this article, over 5176 people have
downloaded AskWiki and 3764 of them kept the App on their
device, which results in a retention rate of 72.72 %. 49 users
evaluated the App with a star between 1 and 5 in the Android
market and the mean value is 4.5 which is rather high.

We also tried the test queries of the 2003 CLEF campaign
in German [7]. Of the 200 queries, only 48 were answered
correctly, and most of them only after the question was refor-
mulated to adapt to the telegraph style required by AskWiki,
e.g. from In which town was Emil Fischer born? to Birth-
place Emil Fischer. It shows that many of the questions in-
volve more than one article to answer , e.g. Which Elvis song
was performed by Gilmore?, while others deal with informa-
tion specific to the US and thus not included in the German
Wikipedia.

8. CONCLUSIONS AND OUTLOOK

We described an approach to retrieve Wikipedia information
in a mobile context. It can be used to either answer questions
directly, if the information is contained in a table or matches
some keyword syntax (like birth place), or get access to an
article’s sub chapter.

An evaluation based on 25 test users as well as the com-
ments in the Android market show that the approach gives
indeed useful results to answer questions in the daily life.

The application can be extended in two directions: the
synonym and stop word lists could be enlarged to cover a
broader set of queries on the one hand, on the other the GUI
could be much more complex to add for example more pic-
tures, sub chapters or follow links directly.

9. REFERENCES

[1] Max Völkel, Markus Krötzsch, Denny Vrandečić, Heiko
Haller, and Rudi Studer, “Semantic wikipedia,” in Pro-
ceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, May 23-26,
2006, MAY 2006.

[2] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören
Auer, Christian Becker, Richard Cyganiak, and Sebastian
Hellmann, “Dbpedia - a crystallization point for the web
of data,” Web Semant., vol. 7, pp. 154–165, September
2009.

[3] David Ahn, Valentin Jijkoun, Gilad Mishne, Karin Mller,
Maarten de Rijke, and Stefan Schlobach, “Using
wikipedia at the trec qa track,” in Proceedings of TREC
2004, 2004.

[4] David Buscaldi and Paolo Rosso, “Mining knowledge
from wikipedia from the question answering task,” Pro-
ceedings of the 5th International Conference on Lan-
guage Resources and Evaluation, 2006.

[5] David Aumueller and Sren Auer, “Towards a semantic
wiki experience – desktop integration and interactivity
in wiksar,” in Proceedings of the 1st Workshop on The
Semantic Desktop at the ISWC 2005 Conference, Stefan
Decker, Jack Park, Dennis Quan, and Leo Sauermann,
Eds., Galway, Ireland, November 2005, pp. 212 – 217.

[6] C. Becker and C. Bizer, “DBpedia Mobile-A Location-
Aware Semantic Web Client,” Proceedings of the Seman-
tic Web Challenge, 2008.

[7] B. Magnini, S. Romagnoli, A. Vallin, J. Herrera, A. Peas,
V. Peinado, F. Verdejo, and M. de Rijke, “Creating the
disequa corpus: a test set for multilingual question an-
swering,” Working Notes for the CLEF 2003 Workshop,
2003.

354


