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ABSTRACT
Estimation of the autoregressive moving average (ARMA)
parameters of a stationary stochastic process is a problem
often encountered in the signal processing literature. It is
well known that estimating the moving average (MA) param-
eters is usually more difficult than estimating the autoregres-
sive (AR) part, especially if the zeros are located close to
the unit circle. In this paper, we present four linear methods
for MA parameter estimation (i.e., methods that involve only
linear operations) and compare their performances first in a
case when the zeros are located far away from the unit circle
and secondly in a presumably harder case when the zeros are
located very close to the unit circle.

1. INTRODUCTION

Consider the following MA equation

y(t) = e(t)+b1e(t −1)+ · · ·+bne(t −n)

= B(z−1)e(t) t = 0, . . . ,N−1 (1)

where
B(z−1) = 1+b1z

−1+ · · ·+bnz
−n (2)

and where{e(t)} is a white noise sequence with varianceσ2.
N is the number of available samples. The model ordern is
assumed to be known in the following. Ifn is unknown, it
can be estimated using, for example, an information crite-
rion rule (see, e.g., [1]).

Our problem lies in estimating the parameters{bk} from
the measured signal{y(t)}N−1

t=0 . Several methods have been
developed in the past for solving this problem (see, e.g., [2]
[3] and the references therein). As long as the zeros asso-
ciated with the polynomial in (2) are located reasonably far
away from the unit circle most known MA parameter estima-
tion methods perform satisfactorily. However, when the ze-
ros are located close to the unit circle the problem becomes
more intricate, and the accuracy of the parameter estimates
usually decreases.

In this paper we will compare fourlinear MA parameter
estimation techniques to see how their performances differ
from one another, especially in the two cases where the zeros
are located close to respectively far away from the unit circle.
We consider the well known Durbin’s method (abbreviated
DM in the following) [4] which is commonly used for the
estimation of the{bk} in (1). The second method considered
is called the inverse covariance (or correlation) method (ab-
breviated ICM here) (see, e.g., [5] [6]). Finally, we consider
two MA parameter estimation techniques based on the cep-
strum, or thevocariance sequence(see, e.g., [7] - [13]). We
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call these two techniques the vocariance recursion method
(VRM) and the vocariance ESPRIT method (VEM) (see [11]
and also below). The outline of VEM below includes a novel
parameter estimation approach specifically designed for the
problem when the zeros are located close to the unit circle.
All methods are described in a concise and simple manner.

In Section 2 brief descriptions of these four methods
(DM, ICM, VRM, and VEM) are presented. In Section 3,
we show a simulation study based on two second-order MA
examples in which we compare the four techniques with a
nonlinear least squares (NLS) search method, in terms of es-
timation accuracy and computational speed. Finally, in Sec-
tion 4, we give some conclusions and suggestions on which
technique of those above should be preferred in a specific
scenario.

2. METHODS

2.1 Durbin’s method (DM)

Durbin’s method [4] is one of the most widely used tech-
niques for MA parameter estimation. It is also known as the
2-stage LSM (least squares method) (see, e.g., [2] [3] and the
references therein for more information). The two stages can
be outlined as follows:

Step 1.The first step consists of fitting an AR model of
orderm> n to {y(t)}. Oncem has been specified, the esti-
mated AR parameters{âk}

m
k=1 can be obtained via the LSM.

Hence, estimates{ê(t)} of the noise sequence{e(t)} can be
computed as

ê(t) = Â(z−1)y(t) t = 0, . . . ,N−1 (3)

where
Â(z−1) = 1+ â1z

−1+ · · ·+ âmz−m.

Step 2.Using{ê(t)} we can write

y(t)− ê(t)≈ [b1 . . . bn]





ê(t −1)
...

ê(t −n)



 (4)

for t = 0, . . . ,N−1, from which estimates{b̂k} of {bk} can
be obtained via the LSM. The model ordermcan be selected
via the Akaike’s information criterion (AIC) or the Bayesian
information criterion (BIC) (see, e.g., [1]). However, a more
expedient rule for selectingm is m= 2n, which we will use
in the following.

2.2 Inverse covariance method (ICM)

The main idea behind this technique is outlined below. For
more information, see, e.g., [5] [6] and the references therein.

The standard covariance sequence of a data string{y(t)}
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is given by

rk =
1

2π

∫ π

−π
Φ(ω)eikω dω k= 0,±1,±2, . . . (5)

whereΦ(ω) is the power spectral density of{y(t)}. As the
name suggests, the inverse covariance sequence is given by

ρk =
1

2π

∫ π

−π

1
Φ(ω)

eikωdω (assumingΦ(ω)> 0 , ∀ω).

(6)
For notational convenience, let{Φp} denote the values taken
by the spectrum at the Fourier frequency grid points:

ωp =
2π
N

p p= 0, . . . ,N−1. (7)

The periodogram estimate ofΦp is given by (see, e.g., [3]):

Φ̂p =
1
N

∣

∣

∣

∣

∣

N−1

∑
t=0

y(t)e−iωpt

∣

∣

∣

∣

∣

2

(8)

for p= 0, . . . ,N−1. Using (8) we can estimate{ρk} as

ρ̂k =
1
N

N−1

∑
p=0

1

Φ̂p
eiωkp k= 0, . . . ,

N
2

(9)

(for k> N/2 the sequence is mirror symmetric). An alterna-
tive spectral estimator̂Φp based on the long AR polynomial
in (3) has also been tested. However, the difference in perfor-
mance between the two estimators was small, and hence we
will use the estimator in (8) since it has lower computational
complexity.

Since
1

Φ(ω)
=

1
σ2|B(eiω)|2

, (10)

which is an AR spectrum, it follows that{bk} and{ρk} are
related via the Yule-Walker equations. Hence we can get esti-
mates{b̂k} from {ρ̂k} via the Yule-Walker method (see, e.g.,
[2] [3]).

2.3 Vocariance recursion method (VRM)

This technique is based on estimation of thecepstrum, or the
cepstral coefficients, or, yet, thevocariance sequence(see,
e.g., [7] - [10]).

By definition, the vocariance sequence{ck} satisfies

lnΦ(z) =
∞

∑
k=−∞

ckz
−k (11)

where, in the present scenario,Φ(z) = σ2B(z)B(z−1). It fol-
lows that

lnB(z) =
∞

∑
k=1

ckz
k (12)

which implies, by differentiation with respect toz, that

B′(z)
B(z)

=
∞

∑
k=1

kckz
k−1 ⇔

n

∑
k=1

kbkz
k−1 =

n

∑
k=0

bkz
k

∞

∑
k=1

kckz
k−1. (13)

The vocariances{ck} can be consistently estimated via

ĉk =
1
N

N−1

∑
p=0

ln(Φ̂p)e
iωk p k= 1, . . . ,

N
2

(14)

(for k > N/2 the sequence is mirror symmetric). Note that
the right hand side in (13) can be rewritten as

n

∑
p=0

∞

∑
k=1

kckbpzp+k−1

=
∞

∑
j=0

[

n

∑
p=0

( j − p+1)c j−p+1bp

]

zj (15)

(assumingc j = 0 for j ≤ 0). The left hand side in (13) can
be rewritten as

n−1

∑
j=0

( j +1)b j+1z
j . (16)

Equating (15) and (16) leads to the recursion (b0 = 1):

b j =
1
j

j−1

∑
p=0

( j − p)c j−pbp j = 1, . . . ,n (17)

which is atriangular linear system in{b j}. Replacing{ck}
in (17) by their estimates{ĉk} obtained from (14) gives us
the desired estimates{b̂ j} of {b j}.

More details about this type of MA parameter estimation
method, and its extension to ARMA signals, can be found in
[11].

2.4 Vocariance ESPRIT method (VEM)

The final technique is also based on the estimation of vo-
cariance sequence. The main idea behind this approach was
partly described in [12]; however, [12] includes a nonlin-
ear estimation step which is here replaced by the ESPRIT
method (see, e.g., [3]). The resulting technique is not really
a linear method since it involves a singular value decomposi-
tion (SVD) step. However, it can be considered to be “quasi-
linear”, since the SVD is such a reliable operation. For more
information about the relationship (20) below between{bk}
and the vocariance sequence, which lies at the basis of VEM,
see [13].

Let {1/zp} be the zeros ofB(z)

B(z) =
n

∏
p=1

(1− zpz) |zp|< 1. (18)

Then

lnB(z) =
n

∑
p=1

ln(1− zpz) =−
n

∑
p=1

∞

∑
k=1

1
k

zk
pzk. (19)

Comparing (12) and (19) gives

−kck =
n

∑
p=1

zk
p. (20)
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Replacing{ck} in (20) by{ĉk} obtained from (14) gives

−kĉk ≈
n

∑
p=1

zk
p k= 1, . . . ,M (21)

whereM ≥ 2n is a user parameter. Note that the right hand
side of (21) can be seen as a damped sinusoidal model.
Hence we can use ESPRIT (see, e.g., [3]) to estimate{zp}
from {−kĉk}. Once{zp} have been estimated we can obtain
estimates{b̂ j} of {b j} via (18).

Regarding the choice ofM, we note that even though the
errors in{ĉk} have the same variance (see [9]), the errors in
{kĉk} have increasing variance ask increases. Moreover the
“modes”{zk

p} in (21) may go quickly to zero with increasing
k. Hence we should not chooseM too large. In the following
we will useM = 4n, which is a reasonable choice for several
practical values ofn.

3. NUMERICAL EXAMPLES

The four MA parameter estimation techniques (DM, ICM,
VRM, and VEM) will be compared with one another in two
rather different numerical examples. We will also compare
the performances of the above four linear methods to that of a
nonlinear least squares (NLS) search method. The estimation
criterion of the NLS method can be written as

min
{bk}

N−1

∑
t=0

[

1
B(z−1)

y(t)

]2

. (22)

NLS achieves the Cramér-Rao lower bound (CRB) in the
Gaussian data case, forN ≫ 1 (see, e.g., [3] [14]). Due to
the high accuracy of the NLS approach, it will be used as a
reference in the comparative performance study below. It-
erative nonlinear methods require adequate initial parameter
estimates to prevent the search algorithm from stopping at
local minima. In the numerical examples below the initial
parameter values for the iterative NLS search are obtained
via a special four-stage LS-IV (least-squares instrumental-
variable) algorithm (see [14] for more information).

As a performance measure, we consider the total variance
(TV) of {b̂k}

TV(b̂) =
n

∑
k=1

E
[

b̂k−bk
]2

(23)

where
b̂= [1 b̂1 · · · b̂n]

and whereE is the expectation operator which is estimated
from 1000 Monte Carlo runs for each method. We will show
the TV for DM, ICM, VRM, VEM, and NLS forN=128,
256, 512, 1024, and 2048. In addition, we will show the
computational time (in seconds) required to perform the
1000 Monte Carlo runs for each considered technique, also
versusN.

Example 1 Consider the following MA sequence

y(t) = e(t)+0.55e(t−1)+0.15e(t−2)

t = 0, . . . ,N−1

where{e(t)} is a white Gaussian noise sequence with zero
mean and unit variance. The corresponding zeros are located
at z1,2 = −0.275± 0.273i which correspond to a distance
|z1,2|= 0.387 from the origin.

In Fig. 1, we show the TV(b̂) for the five methods
for different values ofN. In this example, with zeros far
away from the unit circle, DM and VRM perform very well,
having parameter estimation accuracies comparable to that
of NLS. ICM shows a lower performance and VEM does not
provide reliable parameter estimates in this case. The low
performance of VEM can be explained by the fact that zeros
close to the origin correspond to heavily damped sinusoids
which are hard to estimate using an ESPRIT-based method
for a low value ofM. The computational time required
to perform 1000 Monte Carlo runs using each of the five
techniques is presented in Fig. 2. The differences between
the four linear methods (DM, ICM, VRM, and VEM) are
small. The main observation from Fig. 2 is that all four
linear methods are significantly faster (about 100 times)
than NLS. In addition, the time required for NLS depends
significantly on the considered example, the number of
parameters to be estimated, the location of the zeros, and the
initial estimates, whereas the computational time required
for the other techniques does not depend as much on the data.

Example 2 Next consider the MA sequence

y(t) = e(t)−1.4e(t−1)+0.98e(t−2)

t = 0, . . . ,N−1

where{e(t)} is again a white Gaussian noise sequence with
zero mean and unit variance. The corresponding zeros are
located atz1,2 = 0.7± 0.7i which correspond to a distance
|z1,2|= 0.99 from the origin.

The obtained values of TV(b̂) are presented in Fig. 3 for
the five methods for different values ofN. In this example the
zeros are located very close to the unit circle, which usually
leads to a harder estimation problem than that of Example
1. In this case VRM and VEM perform better than DM and
ICM. None of the linear methods achieve the performance of
the NLS approach. The required time to perform 1000 Monte
Carlo runs for each of these five techniques is similar to Ex-
ample 1 and the corresponding results are therefore omitted.

4. CONCLUSIONS

VRM was the only linear method which performed satisfac-
torily in both examples above. Even though DM is a com-
monly used MA estimation technique, it is well known that
its estimation accuracy degrades when the zeros are close to
the unit circle for a fixed value ofm. For such scenarios,
VRM or VEM can be appealing alternatives. The perfor-
mance of DM can be improved by selecting a larger value of
m, but at the expense of an increased computational complex-
ity. From the simple simulation study above, we conclude
that the parameter estimation accuracy of ICM is lower than
e.g. that of VRM. The significant difference in the perfor-
mance of VEM in the two examples can be explained by the
fact that an ESPRIT-based method can estimate sinusoidal
components (in this case corresponding to zeros close to the
unit circle) very accurately. However the estimation perfor-
mance for heavily damped sinusoids (corresponding to zeros
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Figure 1: The TV(b̂), versusN, for the five methods (DM,
ICM, VRM, VEM, and NLS) in Example 1.
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Figure 2: Time, in seconds, required to perform 1000 Monte
Carlo runs, versusN, for each of the five methods (DM, ICM,
VRM, VEM, and NLS) in Example 1.

close to the origin here) is poor since we have to keepM
rather small.
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Approximate Maximum Likelihood ARMA Estimator
Based on the Power Cepstrum. InProc. Acoust. Speech
Sign. Proc. (ICASSP), pp.2344-2347, 1988.

[13] M.R. Schroeder. Direct (Nonrecursive) Relations Be-
tween Cepstrum and Predictor Coefficients.IEEE Trans.
Acoust. Speech Sign. Proc., vol. 29, pp.297-301, 1981.

[14] L. Ljung. System Identification - Theory For the User.
Prentice Hall, Upper Saddle River, NJ, 1999.

2351


