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ABSTRACT

Automatic music structure analysis is casted as a subspace
clustering problem. By assuming that the feature vectors ex-
tracted from a specific music segment are drawn from a single
subspace, any sequence of such feature vectors derived from
a music recording will lie in a union of as many subspaces as
the music segments in the recording are. First, the sparse and
the low-rank subspace clustering is tested for music structure
analysis by employing three types of beat-synchronous audio
feature sequences. Next, a novel computational efficient sub-
space clustering method is proposed, that is coined as ridge
representation subspace clustering (RRSC). The performance
of the aforementioned three subspace clustering methods is
assessed by conducting experiments on the manually anno-
tated Beatles benchmark dataset. The experimental results in-
dicate that: 1) the performance of the RRSC is comparable or
exceeds that of the sparse and the low-rank subspace cluster-
ing and 2) the RRSC outperforms the state-of-the-art methods
proposed for music structure analysis.

Index Terms— Music Structure Analysis, Music Seg-
mentation, Subspace Clustering, Ridge Regression.

1. INTRODUCTION

The musical form of a music piece refers to the structural de-
scription of the piece at the time scale of segments, such as
intro, verse, chorus, bridge, etc. [1]. Its deduction from the
audio signal is known as automatic music structure analysis.
The latter is a core task in music thumbnailing and summa-
rization, chord transcription , learning of music semantics and
music annotation [2], song segment retrieval [2], and remix-
ing [3].

Human listeners are able to analyze and segment the mu-
sic into meaningful parts by detecting the structural bound-
aries between the segments based on perceived changes in
timbre, tonality, and rhythm over the music piece [4]. Auto-
matic music structure analysis employs low-level feature se-
quences, extracted from the audio signal, in order to model the
timbral, melodic, and rhythmic content [1]. The segmentation
of the feature sequences into structural parts is performed by

employing methods based on either repetition, homogeneity,
or novelty to analyze a recurrence plot or a self-similarity dis-
tance matrix [1–3,5–8]. For a comprehensive review on auto-
matic music structure analysis systems, the interested reader
is referred to [1] (and the references therein).

In this paper, motivated by our previous work [6], mu-
sic structure analysis is casted as a subspace clustering prob-
lem [9–11]. Three types of audio features, namely the mel-
frequency cepstral coefficients (MFCCs), the chroma features,
and the auditory temporal modulations (ATMs) are employed
in order to form beat-synchronous feature sequences model-
ing the audio signal. Due to the timbral, tonal, and rhyth-
mic homogeneity within the music segments, it is reason-
able to assume that the audio features extracted from a spe-
cific music segment are highly correlated and thus linearly
dependent. Therefore, there is a linear subspace that spans
the beat-synchronous audio features for any music segment
implying that the sequence of feature vectors extracted from
the whole music recording will lie in a union of as many
independent linear subspaces as the music segments of this
recording are. Consequently, under this assumption, the seg-
mentation of music can be performed by applying any sub-
space clustering method [9] on the features sequences. State-
of-the-art subspace clustering methods are seeking the spars-
est representation (SR) [10] or the lowest-rank representation
(LRR) [11] of all the beat-synchronous audio features collec-
tively. Such representations exhibit nonzero within-subspace
affinities and almost zero between-subspace affinities. Hence,
a suitable sparse or low-rank affinity matrix for segmenta-
tion can be constructed. Despite their effectiveness in prac-
tical applications [9–11], both the SR-based (i.e., the sparse
subspace clustering (SSC) [10]) and the LRR-based subspace
clustering [11] are computationally demanding methods. Ac-
cordingly, they are not suitable for large-scale problems, such
as the music segmentation involving hundreds of high dimen-
sional beat-synchronous audio features per music recording.

To remedy this drawback, a novel computationally effi-
cient subspace clustering method is proposed that employs
the ridge representation (RR) of all the audio features collec-
tively. To this end, a ridge regression problem is solved. The
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RR shares the same advantage with the SR and the LRR. That
is, when the data are noiseless (i.e., come exactly from a union
of independent linear subspaces), it can be proved that the
RR has nonzero within-subspace affinities and zero between-
subspace affinities. Moreover, unlike the SR and the LRR,
the RR is unique, and admits a closed form. Having derived
the RR-based affinity matrix, the application of spectral clus-
tering to this affinity matrix reveals finally the segmentation
of the feature sequence into music segments (or subspaces in
general). The proposed method is referred to as ridge repre-
sentation subspace clustering (RRSC).

The performance of subspace clustering methods in mu-
sic structure analysis is assessed by conducting experiments
on the manually annotated Beatles benchmark dataset. The
experimental results demonstrate the effectiveness of the pro-
posed RRSC over the SSC and the LRR. Furthermore, the
RRSC outperforms the state-of-the-art music structure analy-
sis methods.

2. AUDIO FEATURE REPRESENTATION

The variations between different music segments are captured
by extracting three audio features from each 22.05-kHz sam-
pled monaural music recording. In particular, the MFCCs, the
Chroma features and the ATMs are employed.

1) The MFCCs encode the timbral properties of the music
signal by parameterizing the rough shape of spectral enve-
lope. Following [7], the MFCC extraction employs frames of
duration 92.9 ms with a hop size of 46.45 ms, and a 42-band
filter bank. The correlation between the frequency bands is
reduced by applying the discrete cosine transform along the
log-energies of the bands. The zeroth order coefficient is dis-
carded yielding a sequence of 12-dimensional MFCC vectors.

2) The Chroma features are able to characterize the har-
monic content of the music signal by projecting the entire
spectrum onto 12 bins representing the 12 distinct semitones
(or chroma) of a musical octave. They are calculated by em-
ploying 92.9 ms frames with a hop size of 23.22 ms as fol-
lows. First, the salience of different fundamental frequencies
in the range 80 − 640 Hz is calculated. The linear frequency
scale is transformed into a musical one by selecting the max-
imum salience value in each frequency range corresponding
to one semitone. Finally, the octave equivalence classes are
summed over the whole pitch range to yield a sequence of
12-dimensional chroma vectors.

3) The auditory temporal modulations carry important
time-varying information of the audio signal [12]. They are
obtained by modeling the path of human auditory processing
as a two-stage process. In the first stage, which models the
early auditory system, the acoustic signal is converted into
a time-frequency distribution along a logarithmic frequency
axis, the so-called auditory spectrogram. The early auditory
system is modeled by Lyons’ passive ear model [13] employ-
ing 96 frequency channels ranging from 62 Hz to 11 kHz.

The auditory spectrogram is then downsampled along the
time axis in order to obtain 10 feature vectors between two
successive beats. The underlying temporal modulations of the
music signal are derived by applying a biorthogonal wavelet
filter along each temporal row of the auditory spectrogram,
where its mean has been previously subtracted, for 8 discrete
rates r ∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz ranging from slow
to fast temporal rates. Thus, the entire auditory spectrogram is
modeled by a three-dimensional representation of frequency,
rate, and time which is then unfolded1 along the time-mode
in order to obtain a sequence of 96 × 8 = 728-dimensional
ATMs features.

Postprocessing. Sequences of beat-synchronous feature
vectors are obtained by averaging any feature sequence over
the beat frames using the beat tracking algorithm described
in [14]. Each row of the beat-synchronous feature matrix
is filtered by applying an average filter of length 8. Finally,
each feature vector undergoes a normalization in order to have
zero-mean and unit ℓ2 norm.

3. MUSIC STRUCTURE ANALYSIS BASED ON
SUBSPACE MODELING

Let a given music recording of K music segments be repre-
sented by a sequence of N beat-synchronous audio feature
vectors of size d, i.e., X = [x1|x2| . . . |xN ] ∈ Rd×N . As-
sume that the feature vectors belong to a certain music seg-
ment lie into the same subspace. Then, the columns of X
are drawn from a union of K independent linear subspaces
of unknown dimensions. Three methods are discussed for
the derivation of the affinity matrix of the subspaces that are
based on sparse, low-rank, and ridge representation. Next,
music structure analysis can be obtained by applying spectral
clustering on these affinity matrices.

3.1. Subspace Clustering by Sparse Representation

Elhamifar and Vidal have proved that if a feature vector stems
from a union of independent linear subspaces, it admits a
sparse representation with respect to the dictionary formed
by all other feature vectors. In particular, the nonzero co-
efficients are associated to vectors drawn from its own sub-
space [10]. Therefore, by seeking the sparsest linear com-
bination, the relationship with the other vectors lying in the
same subspace is revealed automatically. Indeed, the sparse
representation matrix Z ∈ RN×N containing the sparse co-
efficients in its columns can be found by solving the convex
problem:

argmin
Z

∥Z ∥1 s.t. X = XZ, diag(Z) = 0, (1)

1The tensor unfolding can be implemented in Matlab by employing the
tenmat function of the MATLAB Tensor Toolbox available at: http://
csmr.ca.sandia.gov/˜tgkolda/TensorToolbox/.
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where ∥Z∥1 =
∑

i

∑
j |zij | is the matrix ℓ1-norm, |.| is the

absolute value operator, and diag(Z) returns a vector which
contains the diagonal elements of Z.

A sparse nonnegative symmetric affinity matrix W ∈
RN×N

+ can be constructed having elements wij = 0.5(|zij |+
|zji|) [10]. The columns of X can then be segmented into K
clusters by applying the normalized cuts [15] onto the sparse
affinity matrix W. This method is referred to as sparse
subspace clustering (SSC) [10].

3.2. Subspace Clustering by Low-Rank Representation

Another suitable representation for subspace clustering is the
the low-rank representation of all the features jointly. Ideally,
the LRR exhibits nonzero within-subspace affinities and zero
between-subspace affinities. The LRR matrix can be obtained
by solving the following convex optimization problem [11]:

argmin
Z,E

∥Z ∥∗ s.t. X = XZ. (2)

∥Z∥∗ denotes the nuclear norm of Z. That is, the sum of its
singular values. When the data contain outliers , the LRR
matrix can be found by solving:

argmin
Z,E

∥Z ∥∗ + λ∥E∥2,1 s.t. X = XZ+E. (3)

∥E∥2,1 =
∑

j

√∑
i e

2
ij is the ℓ2/ℓ1-norm of E.

Let Z = UΣVT be the singular value decomposition
(SVD) of Z, Ũ = U(Σ)

1
2 , and M = ŨŨT . Then, a low-

rank nonnegative symmetric affinity matrix W ∈ RN×N
+ can

be constructed with elements [11]:

wij = m2
ij . (4)

The segmentation of the data (i.e., the columns of X) into K
clusters is performed by employing the normalized cuts [15]
onto the low-rank affinity matrix W. This method is known
as LRR-based subspace clustering [11].

3.3. Subspace Clustering by Ridge Representation

Despite the effectiveness of the SSC and the LRR-based sub-
space clustering, both methods need to solve computationally
demanding optimization problems via iterative algorithms in
order to derive the representation matrix Z. In particular, the
SSC involves a constrained LASSO regression. Such prob-
lems are non-smooth and thus a high computational effort is
needed for their solution. For the LRR, although the aug-
mented Lagrange multiplier method is a powerful means to
solve (3), one SVD is required at each iteration and in practice
the algorithm converges after hundreds of iterations. Conse-
quently, both the SSC and the LRR are not suitable for large-
scale problems.

In practice, one would like to learn efficiently the repre-
sentation matrix Z ∈ RN×N , such that X = X Z, with

zij = 0, if xi and xj lie in different subspaces and nonzero
otherwise. Such a representation matrix Z can be found by
solving a least-squares problem with Frobenius norm regular-
ization, the so-called ridge regression problem:

argmin
Z

∥X−XZ∥2F + λ∥Z∥2F . (5)

In (5) ∥.∥F denotes the Frobenius norm. The unique solution
of the unconstrained convex problem (5) is referred to as ridge
representation (RR) matrix and it is given in closed-form by:

Z = (XTX+ λI)−1(XTX). (6)

Technically, the desired property of the RR matrix to admit
nonzero entries for within-subspace affinities and zero entries
for between-subspace affinities is enforced by the regulariza-
tion term λ∥Z∥2F in (5) as proved in Theorem 1, which is a
consequence of Lemma 1. The proof of Theorem 1 is omitted
due to lack of space.

Lemma 1 [16]. For any four matrices B,C,D, and F of
compatible dimensions,∥∥∥∥[ B C

D F

]∥∥∥∥2
F

≥
∥∥∥∥[ B 0

0 F

]∥∥∥∥2
F

= ∥B∥2F + ∥F∥2F . (7)

Theorem 1. Assume the columns of X (i.e., feature
vectors) are drawn from a union of K linear independent
subspaces of unknown dimensions and without loss of gener-
ality, X = [X1|X2| . . . |XK ] ∈ Rd×N , where the columns of
Xk ∈ Rd×Nk , k = 1, 2, . . . ,K correspond to the Nk feature
vectors originating from the kth subspace. The minimizer of
(5) is block-diagonal.

As in LRR, a nonnegative symmetric affinity matrix W ∈
RN×N

+ can by constructed by computing the SVD of Z with
elements as in (4). Again, the columns of X are partitioned
into K clusters (i.e., music segments here) by applying the
normalized cuts [15] onto the RR-based affinity matrix. The
aforementioned fast subspace clustering method is referred to
as ridge regression subspace clustering (RRSC).

4. EXPERIMENTAL EVALUATION

4.1. Dataset, Evaluation Procedure, and Evaluation Met-
rics

Beatles dataset2: The dataset consists of 180 songs by The
Beatles. The songs are annotated by the musicologist Alan
W. Pollack. Segmentation time stamps were inserted at the
Universitat Pompeu Fabra (UPF). Each music recording con-
tains on average 10 segments from 5 unique segment classes
(i.e., intro, verse, chorus etc.) [8].

The structure segmentation is obtained by applying the
SSC, the LRR, and the RRSC to the three feature sequences.

2http://www.dtic.upf.edu/ perfe/annotations/sections/license.html
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As a reference method for structure segmentation, the normal-
ized cuts [15] are applied to the self-distance matrix (SDM)
constructed by employing the cosine distance for the three au-
dio features described in Section 2. Two sets of experiments
were conducted on the Beatles dataset. First, following the
experimental setup employed in [2, 3, 5–8, 17], the number of
clusters (i.e., segments) K was considered constant and equal
to 4. In the second experiment, the number of segments was
estimated by employing the soft-thresholding approach [11]
for each music recording. That is, the number of segments K̄
is estimated by:

K̄ = N − int(
N∑
i=1

fτ (σi)). (8)

The function int(.) returns the nearest integer of a real num-
ber, {σi}Ni=1 denotes the set of the singular values of the
Laplacian matrix derived by the corresponding affinity ma-
trix, and fτ is the soft-thresholding operator defined as
fτ (σ) = 1 if σ ≥ τ and log2(1 + σ2

τ2 ), otherwise. The
threshold τ ∈ (0, 1). The optimal values of the various pa-
rameters (i.e., λ, τ ) were determined by a grid search over 10
randomly selected music recordings of the dataset.

Following [2,3,5–8,17], the segment labels are evaluated
by employing the pairwise F -measure, which is one of the
standard metrics of clustering quality. It compares pairs of
beats, which are assigned to the same cluster by music struc-
ture analysis against the reference segmentation. Let FA be
the set of identically labeled pairs of beats in a recording
according to the music structure analysis algorithm and FH

be the set of identically labeled pairs in the human reference
segmentation. The pairwise precision, PP , the pairwise re-
call, PR, and the pairwise F -measure, PF , are defined as:
PP = |FA∩FH |

|FA| , PR = |FA∩FH |
|FH | , and PF = 2 · PP ·PR

PP+PR ,
where |.| denotes the set cardinality.

4.2. Experimental Results

The segment-type labeling performance for the Beatles
dataset is summarized in Table 1. In order to improve
the segment-type labeling performance, the SDM-, SR-,
LRR-, and RR-based affinity matrices were post-processed
as follows. Let any affinity matrix W be decomposed as
W = Dw + Uw + Lw, where Dw contains the 5 main
diagonals of W while Uw and Lw are the upper and the
lower triangular matrices of W − Dw, respectively. Next,
the aforementioned three matrices are normalized by dividing
their elements with the maximum element. Let us denote by
D̂w, Ûw, and L̂w the resulting normalized matrices in the
range [0, 1] of Dw, Uw, and Lw, respectively. Consequently
the normalized affinity Ŵ is obtained, which is then filtered
with a 2D Gabor filter with angle π/4. The results obtained
by applying the normalized cuts to the post-processed affinity
matrix are shown in the columns of tables indicated as (w/P).

Let us begin with a fixed number of segments (i.e., K =)
By inspecting Table 1, one can see that the three subspace
clustering methods, namely the SSC, the LRR, and the pro-
posed RRSC outperform the conventional SDM based music
structure analysis in terms pairwise F -measure for the all the
features. The RRSC and the SSC outperform the LRR, while
in the most cases the RRSC outperforms the subspace cluster-
ing that is compare to. Another advantage of the RRSC com-
pared to the SSC and the LRR is its computational efficiency.
The average CPU time for the calculation of the RR-based
affinity matrix is 0.858 CPU seconds, while the SSC and the
LRR need 42.160 and 193.445 CPU seconds, respectively.
The postprocessing of the affinity matrix not only improves
the clustering performance, but reduces also the number of
segments. Interestingly, the number of segments is close to 10
(i.e., the actual average number of segments according to the
ground-truth), when the ATMs are employed for audio rep-
resentation. This result is worth noting, since no constraints
have been enforced during clustering. The best results re-
ported for segment-type labeling on the Beatles dataset are
obtained here, when the ATMs are employed for audio rep-
resentation and the segmentation is performed by the RRSC.
These results outperform those obtained by the state-of-the-
art music segmentation methods listed in the last five rows of
Table 1.

The segment-type labeling performance for the Beatles
dataset by employing the automatic estimation of K using (8)
is reported in the last five columns of Table 1. Again, the clus-
tering performance of the RRSC is comparable or even better
than that of the SSC and the LRR. When the ATMs are em-
ployed for audio representation and the segmentation is per-
formed by the RRSC on the postprocessed affinity matrix, the
pairwise F -measure is 0.60. Chen et al. have reported a pair-
wise F -measure equal to 0.63 by automatically estimating the
number of segments (i.e., K) [17]. These results indicate that
it is possible to perform a robust unsupervised music structure
analysis in a fully automatic setting.

5. CONCLUSIONS

In this paper, it has been demonstrated that music structure
analysis can be modeled as a subspace clustering problem.
Thus, it can be solved effectively by subspace clustering
methods. To this end, the SSC and the LRR have been
applied to three beat-synchronous audio features for music
structure analysis. Moreover, a novel subspace clustering
method (i.e., the RRSC) that builds on the ridge regression of
all the features jointly has been proposed. The experimental
results on the Beatles dataset indicate the power of the RRSC
for music structure analysis. In particular, when the ATMs
are employed for audio representation, the RRSC yields a
state-of-the-art performance in music structure analysis.
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Fixed K = 4 Automatically estimated K by employing (8)
Method Features Parameter PF Segments PF (w/P) Segments (w/P) Parameters PF Segments PF (w/P) Segments (w/P)

MFCCs λ = 0.3 0.54 37.1 0.54 13.5 λ = 0.3,τ = 0.70 0.52 40.9 0.52 13.6
RRSC Chroma λ = 0.1 0.47 36.7 0.53 12.0 λ = 0.1, τ = 0.65 0.48 28.3 0.51 12.8

ATMs λ = 0.1 0.61 6.1 0.64 6.1 λ = 0.1, τ = 0.11 0.59 6.5 0.60 8.5
MFCCs λ = 0.7 0.55 22.9 0.57 19.0 λ = 0.7, τ = 0.23 0.55 19.4 0.57 5.8

SSC Chroma λ = 0.7 0.47 33.8 0.50 21.6 λ = 0.7, τ = 0.19 0.46 33.1 0.54 5.9
ATMs λ = 0.3 0.60 6.6 0.62 8.0 λ = 0.3, τ = 0.01 0.59 6.1 0.54 3.6
MFCCs λ = 1.1 0.53 38.2 0.53 13.4 λ = 1.1, τ = 0.65 0.51 33.4 0.54 8.9

LRR Chroma λ = 0.5 0.46 47.9 0.52 17.2 λ = 0.5, τ = 0.65 0.47 43.5 0.52 11.9
ATMs λ = 0.9 0.59 17.6 0.60 7.6 λ = 0.9, τ = 0.13 0.56 16.3 0.57 3.3
MFCCs - 0.42 175.5 0.49 7.3

SDM Chroma - 0.43 150.4 0.49 24.5
ATMs - 0.33 406.1 0.47 7.1

[17] Combination of MFCCs and Chroma N/A 0.63
[3] Combination of MFCCs and Chroma N/A 0.62
[8] Chroma N/A 0.60
[7] MFCCs N/A 0.60
[6] ATMs N/A 0.59

Table 1. Segment-type labeling performance on the Beatles dataset. In the last five rows the segment-type labeling performance
on the Beatles dataset obtained by state-of-the-art methods with fixed K = 4 is shown.
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