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ABSTRACT

3D reconstruction from multiple view images requires that
camera parameters are very accurately known and standard
camera calibration techniques [1] often fail to provide the re-
quired level of accuracy for the extrinsic camera parameters.
Using the Kinect depth camera, we propose to estimate cam-
era parameters by minimising the cross correlation between
density functions modelled for each recorded depth images.
We illustrate experimentally how this improves the modelling
for estimating 3D shape from Depths.

Index Terms— Shape-from-Silhouettes (SfS), Shape-
from-Depths (SfD), Multiview geometry.

1. INTRODUCTION

With the availability of cheap depth sensors like the Kinect
camera, there is an increasing interest into performing ac-
curate 3D reconstruction using depth images recorded from
multiple views. The estimation of extrinsic camera parame-
ters for each captured image is essential for merging the in-
formation into a common coordinate system. While in some
highly controlled environments and in synthetic environments
this level of accuracy is possible, in other situations it can
be very expensive, time consuming and hard to achieve. In
general a checkerboard pattern is used to determine these pa-
rameters. All cameras in the set up should be able to see the
one calibration pattern, although multiple calibration patterns
can be used if the translation between the patterns is known.
However, with the pattern in awkward angles and the mapping
from pattern to pattern, a problem arises with the propagation
of errors: the data can be misaligned by up to 2 or 3 cms. This
means that fine details can be impossible to recover for small
objects.

After a short review (section 2), we propose to extend
the modelling proposed by Ruttle et al. for shape-from-
silhouettes [2] to using depth information (section 3). The
cost function is modelling explicitly the noise on the observa-
tions (i.e. modelling uncertainties about the pixel resolution
and the depth values). The extrinsic camera parameters are
estimated using a robust metric between density functions
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and we show experimentally how this framework allows us
to refine the initial camera parameters obtained by calibration
to get a better 3D reconstruction (section 4).

2. CONTEXT

Cui et al. [3] proposed to use sequences of depth data
recorded by a time of flight camera for 3D object scan-
ning. Merging several scans together allows to improve the
quality of the mesh despites the strong noise in the depth
data. The alignment between the depth images is very im-
portant for achieving an accurate reconstruction. The rotation
and translation are estimated by mapping two depth scans
converted as 3D point scans. Their cost function for this
estimation corresponds to the cross correlation between two
probability density functions (pdf) each of which represents a
point cloud [4]. The pdf corresponding to the reference point
cloud is modelled as the empirical density function, while
the second point set is model with a Gaussian mixture. The
resulting cost function to estimate the rigid transformation
can also be understood as maximising the likelihood function
(the Gaussian mixture) modelled by one point set, while the
second corresponds to the observations for computing the
likelihood [3].

Cui et al. [3] converted the depth data into a 3D point
clouds and the uncertainty (or bias) is modelled by a system-
atic offset in the direction of the camera ray. This model ac-
counts only for the noise on the depth data but not for the
uncertainty associated with the pixel resolution. In section
3, we propose to model both uncertainties explicitly without
converting the depth information into 3D point clouds. The
extrinsic camera parameters are also estimated using the cor-
relation between two density functions [4]. However while
we have explicit expressions for these density functions we
do not have independent observations sampled from these dis-
tributions to compute directly the correlation. Section 3.2
presents how the correlation is computed for our modelling.
In the case of the estimation of a rigid transformation, max-
imising the correlation between two pdfs can be shown to be
equivalent to minimising the Euclidian distance between the
pdf [5] . Minimising the distance between two probability
density functions is a very robust approach for parameter es-
timation [6].



3. SHAPE FROM DEPTHS (SFD)

To solve STD, we define the following random variables:

2 RS2 is the 3D spatial latent variable of interest.
The cost function proposed here is optimised w.r.t.
to extract the shape of the object in view in the depth
images.

2 RS correspond to the extrinsic camera parame-
ters modelled as a nuisance random variable. 1 is the
roll component of rotation matrix, » is the pitch com-
ponent of rotation matrix, 3 is the yaw component of
rotation matrix and ( 4; s; ) is the 3D translation
vector [1]. The roll, pitch and yaw define a 3D rota-
tion matrix noted R( ). The intrinsic camera parame-
ters, noted f; fy; Uo; Vo (focal length in horizontal and
vertical axis fx, fy and the coordinates of the centre
pixel (ug; Vo)), are assumed to be accurately estimated
by calibration and they are combined with the extrin-
sic camera parameters to create the projection matrix

P(C):
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The coordinate of the centre of the camera C( ) can
then be computed with:

2 32 3

R() 54 :5 @

6

c()=14

x 2 R3 is an observed random variable corresponding
to the pixel spatial positions and the depth value. For
each camera, a set of observations for x has been col-
lected. These sets are noted S; = fxg')gizl; ‘N,
for the depth image recorded by camera 1, S, =
fxg')gizl; -N, for the depth image recorded by cam-

era2,and soonupto Sc = fxg)gizl; N recorded
by camera C.

2 R3 is the random variable modelling the noise
on depth images. Its distribution p is assumed nor-
mal with mean zero and diagonal covariance matrix of
bandwidth hy = hy, = 1 for the uncertainty on the
pixel positions, and hz = 0:002 the uncertainty about
the depth values (obtained by calibration).

3.1. Link function F for SfD

The function F(x; ; ) that links the random variable

X; ; isdefined as:
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and the stochastic equation used in our modelling is:

)= p() (4)

The variable 2 R3 is an auxiliary random variable that is
added to help the modelling of the cost function (cf. section
3.2) and we are only interested in inferring information about

inthe case = 0. Note that this modelling links explicitly
the observed quantity x from the cameras with the additive
perturbation . The first two functions (F1; F») link the pixel
positions to the latent 3D locations and was used in Ruttle
et al. modelling to infer shape-from-silhouettes [2]. As an
extension to [2], the last function F3 relates the depth values
to the latent 3D locations.

+F(Xx;

3.2. Cost function

From the stochastic equation (4), the conditional density of
givenx, and is:
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Assuming independence between X,  and
sity function p can be computed by:
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is an auxiliary variable and we focus now on the case of
interestwhen =0.p ( )andp ( ) are the priors for the
latent variable  and the nuisance variable . We define our
cost function only using the expectation term. Using the ob-
servations collected (depth images) by the different cameras,
the expectation can be replaced by its empirical mean [7]. For
instance considering the observations S; recorded by the first
camera with extrinsic parameter , the expectation can be
approximated by :

o .1 X . .
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We note this expectation lik( ; 1) because it can be under-
stood as an average likelihood taking one observation at a
time and each term p (F (xg') ; ;1)) represents a one-to-
many mapping between the observation and the latent vari-
ables. Considering the C depth images collected, C average
likelihood functions can be computed flik( ; ¢)ge=1. :c
and merging all views for inference of the 3D shape when all
extrinsic camera parameters are exactly known (noted " ¢; 8c)
leads to

c) ®)

Figure 1 shows this overall likelihood function lik( ) using
synthetic depth images generated using the Stanford bunny
virtual object. All camera parameters are exactly known, and
Tik( ) is a cost function modelling the surface of the object.
The 3D shape can be inferred, for instance, by first comput-
ing this cost function on a fine grid covering the 3D space
and then by thresholding to keep points on the surface. Alter-
natively gradient methods can also be used for inference [2].

3.3. Refining the nuisance parameters

In practice, in real environment, even with a careful calibra-
tion, the extrinsic camera parameters are not available and
these are necessary to get a good cost function Tik( ) for
inference of the shape. Choosing camera 1 as a reference
camera ("1 is available), we want to estimate the parameters
f 2, ; cgsuch that all average likelihoods overlap well
in the 3D space. We formulate the problem as follow:
z
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In practice, to compute this integral, we extract independent
samples ¥ ()gj—;. .\ of the reference function Tik( ; 1)
and the integral becomes:
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The estimate "¢ is then computed using an iterative gradient
algorithm with an initial guess given by the initial calibration.

Note that we are only interested in recovering an accu-
rate 3D surface of the object, not its exact position in the 3D
world. Hence the parameters "1 of the selected reference
camera are not important and do not need to be accurate w.r.t.
a known origin in the 3D world. What is important is that all
other cameras are aligned perfectly with the reference camera.

To maximise overlap between average likelihood func-
tions in this optimisation, while Tik( ; ) is mapped on
Tik( ;"1)toestimate "5, thenTik( ; 3) isthen mapped on
Tik( ;") and so on. This process can lead to a propagation
of errors on the estimated camera parameters. These errors

Fig. 1. Slices of the cost function lik( ) (Top: top left corre-
sponding to the ears, top right the middle of the ears, bottom
left the head and bottom right the middle of the body) com-
puted for depth images of the Stanford Bunny object (bottom)
using 36 depth images generated around the object.

can be reduced by having good initial guesses of the camera
parameters by using standard camera calibration techniques.
They can be further reduced by repeating the process with a
different reference camera and by calibrating the cameras in
reverse order.

4. EXPERIMENTAL RESULTS

This framework has been used for infering 3D shapes from
depth images recorded with a kinect camera with a turning
table. Figure 2 shows a slice of the average likelihood func-
tions before and after the extrinsic camera parameters have
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Fig. 2. Reference average likelihood (left), reference average likelihood overlapped with the average likelihood from another
camera using the initial guess g°> obtained by calibration (middle), and the two likelihoods overlapped after refinement of the

camera parameters ", using our method (right).

been refined. Note the original mismatch between the two
densities that is compensated for with the refinement of the
camera parameters.

Figure 3 shows the camera positions and orientations in
the horizontal plane in our setting using the kinect before and
after the camera parameters have been refined. Indeed our
setting uses a homemade turning table and the deviation of
the true camera parameters from the original values obtained
by calibration is quite important. The axis reports dimension
in meters.
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Fig. 3. Camera parameter refinement using a Kinect and a
turning table. The red cameras show the original position
and orientation of the cameras. The blue cameras show the
position and orientation after refinement. Note the reference
camera at the top.

Figure 4 illustrates the 3D meshes obtained for several
objects that have been captured with the turning table and
a Kinect camera. Reconstructions using sihouettes [2] and
depth images are shown for comparison. While silhouette im-
ages do not provide information about the concavities of the
object, depth images allows these concavities to be well re-
covered. These reconstructions are only accurate if all camera
parameters have been accurately estimated. The real world
dimensions of the objects are in centimeters: 18 15 32
(Gnome) and 18 16 26 (Lighthouse). Some very small
details are not recovered (eg. roof tiles of the lighthouse), but
the inferred meshes are far less noisy and more detailled than
the original depth scans.

5. CONCLUSION

We have extended the Shape from Silhouettes (SfS) mod-
elling [2] to Shape from depth images (SfD). This modelling
like any other modelling for 3D reconstruction requires to es-
timate accuratetly the extrinsic camera parameters, and we
have proposed to estimate robustly these parameter using the
correlation between probability density functions. Experi-
mental result shows that these nuisance parameters can be re-
fined from these obtained in the calibration stage with greater
accuracy.
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