
MATCHING PURSUIT WITH STOCHASTIC SELECTION

Thomas Peel, Valentin Emiya, Liva Ralaivola

Aix-Marseille Université - CNRS
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ABSTRACT
In this paper, we propose a Stochastic Selection strategy that ac-
celerates the atom selection step of Matching Pursuit. This strategy
consists of randomly selecting a subset of atoms and a subset of rows
in the full dictionary at each step of the Matching Pursuit to obtain a
sub-optimal but fast atom selection. We study the performance of the
proposed algorithm in terms of approximation accuracy (decrease of
the residual norm), of exact-sparse recovery and of audio declipping
of real data. Numerical experiments show the relevance of the ap-
proach. The proposed Stochastic Selection strategy is presented with
Matching Pursuit but applies to any pursuit algorithms provided that
their selection step is based on the computation of correlations.

Index Terms— Sparsity; Pursuit Algorithm; Stochastic Proce-
dure.

1. INTRODUCTION

We are interested in estimating the sparse representation x ∈ RK of
a signal y ∈ RM in a so-called dictionary Φ ∈ RM×K such that

y ≈ Φx (1)

where M ≤ K, and where the number of non-zero elements ‖x‖0
in x is small (‖x‖0 � M ). The columns of Φ are usually called
atoms and ‖x‖0 is the sparsity of x.

Retrieving the sparsest representation from an observed signal
and a known dictionary is NP-hard. The Matching Pursuit (MP) al-
gorithm and its descendants [1, 2, 3] have been proposed to estimate
such a sparse representation. Those greedy algorithms, which essen-
tially iterate over two steps, a selection step and an update step, are
known to perform well for exact sparse recovery and sparse approx-
imation [4].

Computational aspects of greedy algorithms have motivated a
few works over the past years. Their goal is not only to propose fast
algorithms but also to make it possible to deal with high-dimensional
data, e.g. when the dictionary size is so large that it cannot be stored
as a matrix in memory.

Accelerating the update stage is useful when high accuracy is
targeted. Indeed, performance is better —regarding the decrease of
the residual’s norm per iteration— with Orthogonal Matching Pur-
suit (OMP) [1, 2] than with MP, at the price of a computationally-
demanding update stage. This has been thoroughly studied in [3]:
the authors propose a detailed analysis of the computational com-
plexity of MP and OMP, together with fast implementations of the
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update stage in OMP; then, their gradient-based pursuit (GP) algo-
rithms use new update stages and achieve better performance than
MP with a lower computational cost than OMP.

Accelerating the selection stage consists in avoiding a full and
naive matrix-vector product between the dictionary-matrix trans-
pose and the current residual vector. It is particularly useful when
a high-dimensional dictionary must be handled. For particular dic-
tionaries, fast transforms [1] can be used. However, they do not
apply in general cases; instead, an approximate selection stage can
be performed using an approximate nearest neighbor (ANN) search.
An approximate search is motivated and supported by the theoret-
ical study of so-called weak greedy algorithms [5, 6], for which
good convergence properties are guaranteed using a suboptimal
selection [7]. ANN search for sparse representations have been
developed using random projections in compressed sensing [8, 9], a
tree structure [10], a locality-sensitive hashing scheme [11], or ran-
dom selections of subsets of atoms [12]. In this paper, we propose
a new approach to accelerate the selection stage using a stochastic
principle, generalizing a recent work proposed in [12].

The main contributions of the paper are: i) a new family of al-
gorithms that are stochastic variants of existing ones (including MP,
OMP, GP); ii) numerical evidence of the accuracy – which is com-
parable to the accuracy of non-stochastic algorithms – and of the
decrease in the computational complexity; iii) a discussion on the
issues at stake regarding the proposed method, including the relation
with compressed sensing and the analysis of the algorithm.

The rest of the paper is organized as follows. In Section 2, we
motivate and present our Stochastic Selection procedure. Section 3
contains numerical experiments that show the relevance of our ap-
proach. This work leads to several theoretical questions discussed in
Section 4.

2. ALGORITHM

2.1. Notations

Let y be a discrete signal living in RM ; y is a (possibly) noisy ob-
servation of a signal Φx sparsely coded in the dictionary Φ. By this,
we mean that we consider the model

y = Φx + n,

where:

• Φ ∈ RM×K is a dictionary composed by K atoms : Φ =
[ϕ1 . . .ϕK ]. Each ϕj is inRM and has a unit l2-norm.

• x ∈ RK is sparse, its support is of length ‖x‖0 = K0.

• n ∈ RM denotes the noise in the measurements.
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Note that we will also consider the non-noisy case y = Φx where
y is exactly K0−sparse.

In this paper, we will randomly select m rows and k columns of
the dictionary. Accordingly,M = {i1, . . . , im} denotes the set of
selected rows andK = {j1, . . . , jk} the set of selected columns (i.e.
atoms) of the dictionary. We denote by yM ∈ RM the restriction of
the vector y to the coordinates indexed byM.

2.2. Motivations

Matching Pursuit [1] is a greedy algorithm developed in the 90’s
that aims at approximately solving the NP-hard problem of finding
the sparsest decomposition of the signal y with respect to the dictio-
nary Φ. As depicted in Algorithm 1, Matching Pursuit computes an
approximate solution to the problem

argmin
x∈RK

‖x‖0 s.t. ‖y −Φx‖2 ≤ ε, (2)

where ε ≥ 0; ε = 0 in the exact sparse case and ε > 0 in the noisy
case. Matching Pursuit is an iterative procedure that improves the
estimation of the sparse coefficients vector x in a greedy fashion.
At step t, the current coefficient vector xt yields the approximation
Φxt of y. We call rt = y−Φxt the residual. At this step, Matching
Pursuit selects the best atom that may be picked, i.e. the atom ϕγt+1

that minimizes the norm of the residual at the next step:

ϕγt+1 = argmin
ϕ∈{ϕ1,...,ϕK}

∥∥rt − 〈rt,ϕ〉ϕ∥∥
2
.

The coefficients vector xt+1 and residual rt+1 are updated accord-
ingly and one continues until a stopping criterion is met (see Algo-
rithm 1 for the details). The usual criteria are to stop either when a
predefined maximal number of iterations is reached (t = T ) or when
the norm of the residual is below a predefined precision (

∥∥rt∥∥
2
≤ ε).

Algorithm 1 Matching Pursuit

inputs: Φ ∈ RM×K ,y ∈ RM .
outputs: x ∈ RK .

initialization: x← 0, r← y.
repeat

Selection : ĵ = argmaxj∈{1,..,K} | < ϕj , r > |
Update : xĵ = xĵ+ < ϕĵ , r >

r = r− < ϕĵ , r > ϕĵ
until a stopping criterion is met.

Note that unless the dictionary has a particular structure, the
complexity of the Matching Pursuit algorithm lies in the selection
step, and more precisely the computation of the inner products
|〈ϕj , r〉|. Indeed, this step involves computing K inner products
of signals of length M , which takes O(MK) operations, and sort
them to extract the index of the selected atom (O(logK)), while the
update step takes O(M) operations.

To speed up Matching Pursuit, people have essentially focused
on three directions. First, when the dictionary has a particular struc-
ture, for example when it corresponds to a fast transform such as
a Gabor transform, the computation complexity of the dot products
decreases fromO(MK) toO(K logM), and it makes sense to take
advantage of such properties of the dictionary. However, in the gen-
eral case, it might well be the case that the redundant dictionary at

stake does not have such properties and it is necessary to envision
other acceleration strategies. To this end, a second route has been to
focus on the effectiveness of the update step: once the atom has been
selected, the goal is to implement an update step such that the norm
of the residual decreases faster than in the case of Matching Pursuit.
This is the purpose of the Orthogonal Matching Pursuit algorithm
(which was proposed along with Matching Pursuit), as well as many
others. These updates are more effective to decrease the norm of
the residual, i.e. the magnitude of the decrease induced by such up-
dates is larger than that induced the Matching Pursuit update, while
the cost of the refined update usually dominates that of the compu-
tations of the inner products. A third direction focuses on reducing
the complexity of the selection step, while keeping the simple and
efficient update step of Matching Pursuit. This is the strategy under-
taken by [5, 6, 7, 8, 9, 10, 11, 12], and this is the strategy that we
build our algorithm upon.

Note that we make no assumption on the properties of the dic-
tionary at hand and our goal is to keep every step of this modified
Matching Pursuit to a very low complexity, so that the computation
of each iteration is fast. As we shall see, we propose an approximate
selection step, which may result in sub-optimal selections of atoms.
Our modified algorithm thus may be less efficient than Matching
Pursuit in terms of the residual norm decrease per iteration. How-
ever, a gain in computation time per iteration, resulting in an overall
faster algorithm, may be hoped for.

Before stating the algorithm, we want to stress out that although
our Stochastic Selection procedure is here proposed in the frame-
work of MP, it obviously carries over any other Pursuits algorithm
with a selection step based on the computation of inner products,
such as Orthogonal Matching Pursuit, Gradient Pursuits and so on.

2.3. Matching Pursuit with a stochastic selection

Our Matching Pursuit with a Stochastic Selection differs from the
classical Matching Pursuit only in the selection step. The Stochastic
Selection we propose here reduces the cost of the scalar products
computations by proceeding to two dimension reductions:

1. Stochastic column selection. We consider only a sub-dictio-
nary of Φ consisting of k atoms chosen uniformly at random
among the K original ones.

2. Stochastic row selection. We consider an approximation of
each scalar product 〈ϕj , r〉 at stake using onlym coordinates
of the signals chosen uniformly at random among {1, ..,M}.

We select the atom in the sub-dictionary yielding the approximate
scalar product with the current residual with the largest amplitude.
The update step is exactly the same as in MP: once an atom ϕj is
selected we use the exact scalar product 〈ϕj , r〉 to update the coeffi-
cients vector and the residual. The stopping criteria remain the same
as in MP. The algorithm is described in details in Algorithm 2.

The algorithm proposed in [12] is a particular case of our algo-
rithm where only a subset of columns is randomly selected. When
using only random subset of the atoms in Φ, one can not ensure to
pick the best atom, however, one hopes to find one of the atoms in-
volved in the representation of y. We add here the coordinate selec-
tion which implies that we do not at first have access to the correct
values of the scalar products even for the selected sub-dictionary.
Drawing a new random sub-dictionary and a new random set of coor-
dinates at each iteration however allows us to explore all coordinates
and all atoms, thus recover an accurate representation of y.

The selection step of Algorithm 2 takes O(mk) operations in-
stead of theO(MK) operations needed in MP. The gain in computa-
tion time is thus of order MK/mk. This gain is to be balanced with
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Algorithm 2 Matching Pursuit with Stochastic Selection

inputs: Φ ∈ RM×K ,y ∈ RM , m ∈ {1, ..,M}, k ∈ {1, ..,K}.
outputs: x ∈ RK .

initialization: x← 0, r← y.
repeat

Randomly pick a setM of m row indexes.
Randomly pick a set K of k column indexes.
Selection : ĵ = argmaxj∈K | < ϕjM, rM > |
Update : xĵ = xĵ+ < ϕĵ , r >

r = r− < ϕĵ , r > ϕĵ
until a stopping criterion is met.

the loss of accuracy due to the sub-optimality of the chosen atoms.
We show in the numerical experiments section (Section 3) that over-
all, this Stochastic Selection procedure allows for faster computa-
tions time than MP.

3. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical experiments in
order to validate our approach. In a first experiment, we generate a
random overcomplete dictionary and study the accuracy of our algo-
rithm in terms of the residual energy decrease as a function of iter-
ations and time. We compare our Matching Pursuit with Stochastic
Selection approach (MP-S) to the standard Matching Pursuit (MP)
algorithm. We then use a DCT dictionary in order to validate the
capacity of the MP-S approach to recover the support of a signal (ex-
act sparse recovery problem). Declipping of real audio data is per-
formed in a third experiment using the stochastic selection in OMP.

3.1. Data generation

In the two following subsections, we use signals of lengthM = 128
and two types of dictionaries. We generate on the one hand random
dictionaries Φ ∈ RM×K : each entry is an i.i.d random variable
drawn from a standard Gaussian distribution and normalized to have
unit l2-norm atoms. On the other hand, we use standard DCT IV
dictionaries. In sections 3.2 and 3.3he vector x is aK0-sparse vector
where each nonzero entry is an i.i.d Gaussian random variable.

3.2. Residual energy decrease

In this experiment, we measure the energy of the residual as a func-
tion of the iterations of the algorithm and also as a function of run-
time of the selection stage. We compare our approach with standard
Matching Pursuit and a variant we called MP-S0 of our Matching
Pursuit with Stochastic Selection approach. In this variant, a sub-
dictionary is extracted at the beginning of the procedure (picking
uniformly at random row and column subsets from the entire dic-
tionary). The specificity lies in the fact that we use only this fixed
sub-dictionary to identify the best atom at each iteration. Once an
atom is selected, we do the same updates as in Algorithm 1 and 2
(i.e. using the entire information contained in the atom selected).
This variant, which has the same runtime complexity as MP-S, plays
the role of a baseline to demonstrate the usefulness of renewing at
each iteration the subsets used for the selection step.

For the MP-S procedure, we denote by µ (resp. κ) the ratio
m/M (resp. k/K). We ran experiments with a large set of configu-
rations (µ, κ ∈ [0.2, 1.0]). Large values of these parameters imply a

decrease per iteration close to MP while the gain in runtime is low.
Small values imply a less efficient decrease per iteration but in gen-
eral a larger gain in runtime of the algorithm. We only report in Fig-
ures 1 and 2 the results for the case µ×κ = 0.36 andK = 512. We
used three configurations of MP-S with equal computational com-
plexity: one with every atoms and a subset of dimensions of size
m = 0.36×M , one with every dimensions and only k = 0.36×K
atoms and the last one with µ = κ =

√
µ× κ. Finally, for each ex-

periment we average the performance of the Matching Pursuit with
Stochastic Selection procedure over 20 runs.

The first result we want to emphasize here is the failure of the
MP-S0 approach and, accordingly, the gain induced by our stochas-
tic procedure. Clearly, MP-S0 is only able to decrease the residual
energy in the first iterations and quickly reaches an asymptote. On
the contrary, with the same runtime complexity, MP-S takes advan-
tage of renewing the subsets at each iteration and does not suffer this
lack of information.

Figure 1 shows the results of the experiment for a support of size
K0 = 32. As one can see, with MP-S, the residual energy does not
decrease as much as with MP at each iteration (top). This behavior
can easily be explained because MP-S does not always find the best
correlated atom at each iteration. However, since iterations of MP-S
involve fewer operations than in MP, the residual energy decreases
faster (in term of runtime) with MP-S (bottom). We can notice that
MP-S outperforms MP whatever the configuration used, with an ad-
vantage for the setting µ = 1 and κ = 0.36 which performs the
selection with the real dot products of a subset of atoms. In this con-
figuration, a 120 dB decrease of the residual energy is reached more
than twice faster than with MP. This improvement comes from the
fact that we only do 36% of the calculations that MP does. Note that
this is precisely the setting used in [12].

The behavior is quite different in Figure 2. Here, we are in a
case where the support is very sparse since K0 = 2. In this setting,
the version of MP-S using every atom but looking only at 36% of the
coordinates is the only one that beats MP. Surprisingly, computing
the dot product with only 36% of the information seems to be suffi-
cient to find, at each iteration, an atom as good as the one selected by
MP. Moreover, MP-S seems to act exactly the same manner as MP
in this setting and reaches again the same performance as MP more
than twice faster. Here, the approach of [12] (µ = 1 and κ = 0.36)
experiences difficulties to decrease the residual energy. This config-
uration seems to be too sensitive to the fact that atoms of the support
may often not be selected as candidates. The same behavior appears
with the last configuration (µ = κ = 0.6).

3.3. Exact support recovery

In this section, we evaluate the capacity of our approach to recover
the support of a signal and compare it to the standard Matching Pur-
suit approach. We only look at the exact sparse recovery problem
i.e. we assume there is no noise: y = Φx. We use a DCT dictio-
nary. Phase-transition diagrams are drawn in a standard way. The
performance criterion is the normalized correlation between original
and estimated vectors of coefficients. We consider that the support is
recovered if this correlation is above 99%. We have run experiments
for various configurations and plot the recovery success as a function
of the redundancy δ =M/K and the sparsity ρ = K0/M . For each
couple (δ, ρ), we ran the experiment 50 times and stop the procedure
before adding the (K0 + 1)-th nonzero entry to the estimated vector
of coefficients.

Figure 3 shows the phase-transition diagrams for various values
of µ×κ. Recovery is displayed from white (recovery success for all
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Fig. 1. Residual energy decrease (random dictionary, K0 = 32).

50 runs) to black (failure for all of them). Here, we do not tweak the
parameters and only use the median configuration where µ = κ.

First, the difference is very slight between MP and MP-S, when
µ×κ = 0.81 (see (a) and (b)) i.e. with subsets of rows and columns
close to the ones considered by MP. Second, as one decreases the size
of the randomly selected subsets, one can notice that the redundancy
of the dictionary seems to be a crucial parameter (see (c) and (d)). A
theoretical analysis of the algorithm would be needed here to explain
this sensitivity.

3.4. Audio declipping application

In order to assess the performance on real data, we have used the
stochastic selection in OMP for audio declipping. We have repro-
duced the declipping experiments on speech sampled at 8kHz pro-
posed in [13] using the code released by the authors. The exact same
experimental conditions have been used and are not reported here
due to space issues. We used the original OMP and its declipping
version (see [13]). Their variants with stochastic selection have been
used for µ = κ = 0.8 and µ = κ = 0.6.

Signal-to-noise ratio (SNR) performance is reported in Table 1
together with measured time complexity. Here, we measure the to-
tal time needed by the declipping algorithm (not the time for atom
selections only). We observe a very low performance decrease but a
significant time saving when using stochastic selections. As a con-
sequence, we see that 1/ the proposed method can deal with real,
noisy data; 2/ stochastic selection can be used with OMP; 3/ even
with OMP, time saving is significant; and 4/ as SNR is computed on
missing data, we measure a quantity that is akin to a generalization
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Fig. 2. Residual energy decrease (random dictionary, K0 = 2).

performance, as encountered in machine learning, while previous
experiments assess the approximation and recovery performance.

4. DISCUSSION AND OUTLOOKS

In the present paper, we have proposed a stochastic sampling strategy
to accelerate the atom selection step of Matching Pursuit. At each
iteration, our approach consists in randomly selecting a set of rows
and columns from the dictionary. The set of columns corresponds to
the candidate atoms that will be considered for their addition in the
signal representation. This means that instead of scanning through
all available atoms, we propose to restrain the search to few stochas-
tically selected atoms as in [12]. We generalize this approach with
an additional feature: in lieu of computing the correlations between
the selected set of atoms and the current residual, we use an esti-
mate of the correlations based on a stochastic downsampling of the
atoms and of the residual. In essence, the procedure that we propose
performs a random selection of columns and a random selection of
rows from the dictionary and only uses the reduced dictionary to per-
form the selection step. Several numerical simulations illustrate the
relevance of our approach both in terms of CPU time gained with
respect to classical MP and in terms of the quality of the computed
solution. We observe a very advantageous tradeoff between a limited
performance decrease and a large time complexity reduction.

Our approach raises a number of questions, which we plan to
investigate in the near future.

First —more of an observation than a question— it is important
to understand the wild applicability of our approach: even though
we have presented it in the context of Matching Pursuit, it obviously
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Clipping OMP OMP-S0.8 OMP-S0.6 d-OMP d-OMP-S0.8 d-OMP-S0.6

0.4 8.3 8.2 8.2 14.5 13.5 14.0
0.6 13.2 12.7 12.5 18.2 18.2 18.0
0.8 18.5 18.1 17.4 23.9 23.9 23.1

Time (s) 293 238 193 321 264 220

Table 1. Audio declipping performance (SNR in dB) for several clipping levels (rows) and for several algorithms (columns): OMP, declipping
OMP (d-OMP) and their variants with stochastic selection (OMP-S∗, d-OMP-S∗). Last row: average time for processing a sound.
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Fig. 3. Support recovery as a function of the dictionary redundancy
and the support sparsity for different values of the product µ× κ.

applies to many kinds of pursuit algorithms provided that their se-
lection step is based on the computation of correlations.

Second, there is the pressing question of bringing theoretical
support to our algorithm. Fueled by the very positive empirical re-
sults presented here, we are now to devote our efforts to this aspect
of our study. Among the questions that we want to address are the
following. Is it possible to state conditions on the dictionary, such
as coherence-related conditions, that guarantee i) the convergence of
our algorithm and its connections to some form of weak-Matching
Pursuit procedures, ii) the exponential decrease of the norm of the
residual and iii) the retrieval of atoms that are indeed in the support
of the signal considered (in case of exact-sparse recovery) ? Is it pos-
sible to devise non-uniform selection strategies that would accelerate
even more? Answering these questions would require us to formally
show that, in addition to (memory) space-related matters, there is a
gain (or at least, no loss) in resampling different sets of coordinates
at each iteration compared to sampling a random set of coordinates
beforehand (as in MP-S0).

Third, we are naturally brought to the question of the connec-
tions between our work and the contributions making use of random
projections to reduce the sizes of the vectors and matrices they are
based on. Randomly selecting coordinates (i.e. rows) of atoms might
indeed be viewed as performing a random projection, and viewed
this way, the uniform random selection strategy induces certain prop-
erties on the corresponding projections (regarding the orthogonal-
ity of the projection space): those have to be clearly stated. Down

the road, it also leads us to compare our approach with compressed
sensing-based Matching Pursuit [14]. A critical difference is again
how the random projections are computed: at each iteration for our
procedure, and once for all in the latter approach.
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