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ABSTRACT
A novel algorithm for the spectral factorization (SF) of a para-
Hermitian polynomial matrix (PPM) is presented. This uti-
lizes a series of paraunitary transformations to reconstruct the
spectral factors of the PPM from the spectral factors of its
eigenvalue polynomial matrix (EPM). The EPM is a diagonal
polynomial matrix (DPM) obtained by applying a set of sim-
ple shift and rotation operators to the PPM using the second
order best rotation (SBR2) algorithm. The spectral factors of
the EPM are calculated by factorizing each of its scalar ele-
ments independently. In this paper, it is shown how to gener-
ate a series of paraunitary matrices which then map the fac-
tors of the EPM to the required spectral factors of the original
PPM. The method basically introduces a sequence of stable
operators which provide a direct connection between the one-
dimensional spectral factorization problem and the multidi-
mensional case.

Index Terms— spectral factorization (SF), para-Hermitian
polynomial matrix (PPM), second order sequential best rota-
tion (SBR2) algorithm, eigenvalue polynomial matrix (EPM).

1. INTRODUCTION

Causality plays a significant role in analyzing many engineer-
ing systems. Constructing a causal system from its autocor-
relation function, or equivalently its spectral density function,
is referred to as spectral factorization [1]. In the scalar case,
let the autocorrelation function of a stationary process x(t) be
denoted by f(τ) = E{x(k + τ)x∗(k)} and its corresponding
Fourier transform by f(ejw) where j here denotes

√
−1. If

f(ejw) belongs to the class of functions in the Hardy space
then the z-transform of the autocorrelation function admits
an inner-outer factorization of the form f(z) = f+(z)f−(z)
where f+(z) is an analytic function outside the unit circle,
and f−(z) = f+

∗
(z−1) [2]. The outer function, f+(z), can

be expressed in the form

f+(z) = exp(
1

4π

∫ π

−π

ejω + z

ejω − z
ln f(ejω)dω) (1)

However, it is well known that there is no analog of the above
formula for vector processes (i.e. the multichannel case)
[2], [3]. In the case of a vector process, the autocorrelation

function, as shown later, may be represented by means of
a para-Hermitian polynomial matrix. To date, amongst all
multichannel SF algorithms, the Newton-Raphson based fac-
torisation of the PPM proposed by Wilson [2] seems to be
the most stable and reliable. Wilson’s algorithm attempts
to minimize the Euclidean distance between the product of
its estimated spectral factors and the given PPM by means
of a stepwise Newton-Raphson iteration [2], [4]. An imple-
mentation of this Newton-Raphson method is provided in the
polynomial matrix toolbox from PolyX[5].

In this paper, a new algorithm for multichannel SF is
introduced. In effect, it constructs a bridge between the
multidimensional spectral factors and a set of underlying
one dimensional factors by means of totally stable parau-
nitary transformations. The novel approach adopted here
is to transform the initial PPM into the form of a diagonal
polynomial matrix (DPM) using a sequence of elementary
paraunitary matrix operations. This is achieved fairly simply
using the SBR2 algorithm originally proposed by McWhirter
et al [6]. An established one dimensional SF algorithm such
as Wilson’s [2] is then used to compute the inner and outer
factors corresponding to each element of the DPM which
is, of course, a simple (para-Hermitian) scalar polynomial.
The resulting outer (inner) factors are then projected back
to generate the required inner (outer) spectral factors of the
initial PPM. In principle, this back projection can be imple-
mented very easily, by applying the sequence of elementary
paraunitary matrix operations computed by SBR2, in reverse
order and paraconjugate form [6]. However, reconstructing
the spectral factors of the PPM from the spectral factors of
the DPM, is not quite so simple if the analytic properties are
to be preserved. A modified sequence of paraunitary matri-
ces is introduced in this paper. This sequence of paraunitary
matrices is selected in a way which constructs the spectral
factors of the PPM whilst retaining the integrity of the SBR2
algorithm.

Throughout this paper, matrices are denoted by upper
case bold characters and vectors by lower case bold. [.]jk
denotes the (j, k) element of the matrix in square brack-
ets. The superscripts ∗, T , and H denote the complex
conjugate, matrix transpose and Hermitian conjugate re-
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spectively. The underscore is used to denote a polyno-
mial (including the more general case of Laurent polyno-
mials which can include negative powers of the indeter-
minate variable). A para-Hermitian polynomial matrix is
denoted by R(z) =

∑N
τ=−N Rτz−N , where Rτ ∈ Cp×p

and for off-diagonal entries we have [Rτ ]kl = [R−τ ]∗lk.
For a given polynomial matrix H(z), the paraconjugate is
denoted by H̃(z) and defined as H̃(z) = HH(1/z). A
paraunitary polynomial matrix H(z) is one which satisfies
H̃(z)H(z) = H(z)H̃(z) = I. The unit delay is represented
throughout by z−1.

The remainder of this paper is organized as follows. In
section two the concept of spectral factorization is briefly
stated. The SBR2 algorithm is outlined in section three.
Section four provides an overview of the novel spectral fac-
torization algorithm, and some comments and conclusion
are presented in section five. For clarity, some of the more
detailed analysis relating to section four is relegated to the
appendix.

2. SPECTRAL FACTORIZATION

Let a polynomial power spectral density matrix be denoted by

R(z) =

N∑
τ=−N

Rτzτ , (2)

where the sequence {Rτ}Nτ=−N denotes the set of constant
correlation matrix coefficients R(τ) = E{x(k + τ)xH(k)}.
If R(z) is integrable on the unit circle, T, and if the Paley-
Wiener condition is satisfied i.e. ln detR(z) ∈ L1(T) [1],
then R(z) admits the following factorization:

R(z) = S+(z)S−(z). (3)

where

S+(z) =

0∑
k=−N

Skzk (4)

S−(z) =
N∑
k=0

SHk z
k = S̃+(z) (5)

and det(S+(z)) 6= 0 for all |z| ≥ 1. S+(z) is referred to as an
outer analytic polynomial matrix from Hardy space [1], [3].
The spectral factors are unique up to a constant right unitary
matrix multiplier [1].

3. SECOND ORDER SEQUENTIAL BEST ROTATION
ALGORITHM (SBR2)

The second order sequential best rotation algorithm (SBR2) is
designed to diagonalize a para-Hermitian polynomial matrix

by means of a paraunitary similarity transformation [6]. For
a given p × p PPM , the objective of SBR2 is to compute
paraunitary matrices H(z) such that

H(z)R(z)H̃(z) u D(z), (6)

where D(z) = diag{d11(z), d22(z), ...dpp(z)} is a diagonal
polynomial matrix. The diagonal elements of D(z) may be
viewed as polynomial eigenvalues of the matrix R(z) [6]. In
effect SBR2 generates a set of one-dimensional power spec-
tral densities from which the PPM can be reconstructed. H(z)
is a paraunitary polynomial matrix with detH(z) = z−k.
H(z) is generated iteratively during the SBR2 procedure
which continues until the PPM is sufficiently diagonal [6].
H(z) takes the general form

H(z) =

1∏
i=n

Hi(z) (7)

where Hi(z), 1 ≤ i ≤ n is an elementary paraunitary matrix,
and n represents the number of iteration required. If in the
βth iteration, Rβ(z) = Hβ(z)Rβ−1(z)H̃β(z) is still not suffi-
ciently diagonal, and the dominant off-diagonal coefficient is
the (j, k) element of the matrix coefficient of zM , then Hβ(z)
is given by

Hβ(z) =


I1 0

cos(θ) sin(θ)eiφz−M

I2
−sin(θ)e−iφ cos(θ)z−M

0 I3


(8)

where Hβ(z) is equal to the p × p identity matrix except for
elements in the (j, k) plane which are replaced by a 2× 2 pa-
raunitary matrix. The angles θ and φ are selected to ensure
that the dominant coefficient is driven to zero. The entries
Ir, r ∈ {1, 2, 3} constitute identity matrices of dimension
(min{j, k} − 1), (|j − k| − 1) and (p − max{j, k} + 1) re-
spectively. It should be clear that H(z) is paraunitary by con-
struction and so SBR2 is a stable, reversible algorithm. Given
D(z) and H(z), it is possible to reconstruct the matrix R(z) to
a high degree of accuracy [6]. The reverse procedure, starting
with Rn(z) = D(z), can be stated very simply as

Rβ−1(z) = H̃β(z)Rβ(z)Hβ(z) (9)

β = n, .... 1. The reconstruction is finally given by R0(z).

4. NOVEL SPECTRAL FACTORIZATION
ALGORITHM

The main idea behind our algorithm is to provide a framework
for extending scalar spectral factorization to the multidimen-
sional case. To this end, after the PPM has been diagonalized
by SBR2 as in (6), each entry within D(z) is factorizable in

1070



accordance with the scalar SF formula (1), leading to inner
and outer polynomial matrices for D(z) in the form

D(z) = diag{d11(z), d22(z), ..., dpp(z)} =
diag{d+11(z), d

+
22(z), ..., d

+
pp(z)}diag{d−11(z), d

−
22(z), ..., d

−
pp(z)}

= D+(z)D−(z)
(10)

where d+ii(z) and d−ii(z) respectively, denote the outer and in-
ner spectral factors of dii(z), 1 ≤ i ≤ p. We have

R(z) u H̃(z)D(z)H(z)

= H̃(z)D+(z)D−(z)H(z)

= H̃(z)D+(z)H(z)H̃(z)D−(z)H(z)

= {
n∏
i=1

H̃i(z)D
+(z)

1∏
i=n

Hi(z)}{
n∏
i=1

H̃i(z)D
−(z)

1∏
i=n

Hi(z)}

.
= A+(z)A−(z). (11)

The equality above shows how the spectral factors of D(z)
can be projected back by inverting the effect of SBR2. Fur-
thermore, the polynomial matrices A+(z) and A−(z) are both
clearly paraunitary. However, A+(z) and A−(z) may contain
both positive and negative powers of z in which case they do
not comply with the definition of spectral factors as set out
in equations (4) and (5). For this reason, A+(z) and A−(z)
will be referred to as inner-like and outer-like polynomial ma-
trices, respectively. To overcome this limitation, we apply
an additional paraunitary polynomial matrix from the right to
A+
i (z) and from the left to A−i (z) in each step of the follow-

ing iterative reconstruction starting with A+
n (z) = D+(z) and

A−n (z) = D−(z):

A+
β−1(z) = H̃β(z)A

+
β (z)Hβ(z)Cβ(z), (12)

A−β−1(z) = C̃β(z)H̃β(z)A
−
β (z)Hβ(z) (13)

for β = n, .... 1. The outer matrix is given by S+(z) = A+
0 (z)

while the inner matrix is given by S−(z) = A−0 (z). We call
each of the matrices Cβ(z) a counteractive polynomial matrix
(CPM). The purpose of introducing a CPM is to eliminate the
unwanted positive or negative powers which would otherwise
occur in S+(z) and S−(z) without affecting the integrity of
the SBR2 reconstruction process.

The CPM is defined in each step of the reconstruction,
based on the sign of the determinant of Hβ(z) and the location
of the element to be reconstructed (referred to as the target
element). Let detHβ(z) = z−M ; then, if M ≤ 0 and the
target element is located in the (i, j) plane, Cβ(z) is defined

as

Cβ(z) =


I1 0

1√
2

1√
2

I2
−zM√

2
zM√

2

0 I3

 (14)

where Ir r ∈ {1, 2, 3} and all matrix entries are in one to
one correspondence with those in (8). On the other hand, if
M > 0, Cβ(z) takes the form

f11(z)
f22(z)

. . . . . .

z−M√
2

−z−M√
2

.

. . . . . .

. . . frr(z) . .

. . . . . .
1√
2

1√
2

.

. . . . .
fp,p(z)


where, for elements not in the (i, j) plane, fkk(z) (k ∈
{1, ...p}) is equal to one if the (i, k) and (j, k) entries are
both equal to zero; otherwise fkk(z) = z−M .

In summary, our proposed algorithm computes a set of
one dimensional spectral factors and transforms them to the
required spectral factors of the initial PPM by means of parau-
nitary matrices. In the appendix we show that the additional
CPM operations defined above do not have any effect on the
integrity of the SBR2 algorithm.

5. COMMENTS AND CONCLUSIONS

A novel multi-channel spectral factorization algorithm has
been presented in this paper. It provides the means for a
series of paraunitary transformations to map a set to one-
dimensional spectral factors to the spectral factors of a PPM.
In this respect, our algorithm is entirely distinct from any
which have been published before. Furthermore, it is based on
paraunitary transformations which are extremely stable and
well suited to DSP programming. Due to the limitation on
space, it has not been possible in this paper, to present any
of the numerical computations carried out to date. However,
successful results have been obtained for a number of sam-
ple multichannel SF problems. We intend to include various
representative examples in a future publication.
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6. APPENDIX

This appendix is intended to illustrate that the computed spec-
tral factors from the algorithm specified in section 4 satisfy all
the conditions given in section 2. This amounts to showing
that

A The inner-like and outer-like spectral factors are generated
by the recursion in (12) i.e that A+

0 (z)A
−
0 (z) u R(z).

B The computed outer spectral factor S+(z) has no terms
with positive power as specified in equation (4). It is
required to show that detS+(z) 6= 0 for all |z| < 1.
Noting that this is true for A+

n (z), it suffices to show
that the same property is maintained following the iter-
ative step defined in (12),

6.1. Proof of claim A

From (12) it follows immediately that

A+
β−1(z)A

−
β−1(z) = H̃β(z)A

+
β (z)A

−
β (z)Hβ(z) (15)

By iterating this equation for β = n, n − 1, ..., 1, and noting
that

A+
n (z)A

−
n (z) = D+(z)D−(z) = D(z) (16)

it follows as required that

A+
0 (z)A

−
0 (z) = H̃(z)D(z)H(z) u R(z) (17)

where H(z) is given by the product of elementary paraunitary
matrices Hi(z) as in (7)

6.2. Proof for claim B

In order to simplify the following proof, some further nota-
tion is introduced. A linear combination of analytic functions
X1(z) and X2(z) is denoted by fX1

⊕
X2

(z) and given as
follows

fX1
⊕
X2

(z) = aX1(z) + bX2(z) (18)

where a and b are constant complex numbers. If we wanted
to represent a linear combination ofX1(z) andX2(z) located
in the (i, j) entry of a matrix at the δth iteration, we denote it
by f ij,δX1

⊕
X2

(z). We begin with a proof for any 2 × 2 PPM
and then generalise it to the p× p case.

For a 2 × 2 PPM, D(z) and its spectral factors take the
form given in (10) i.e.

D(z) = diag{d11(z), d22(z)} =
diag{d+11(z), d

+
22(z)}diag{d−11(z), d

−
22(z)} = D+(z)D−(z)

(19)

The reconstruction, based on ’inverting’ the SBR2 algorithm,
starts with the diagonal matrix D(z), and then, after the first
step R1(z) can be represented as follows

R1(z) =

(
f11,1d11

⊕
d22

(z) f12,1d11
⊕
d22

(z)z−k1

f21,1d11
⊕
d22

(z)zk1 f22,1d11
⊕
d22

(z)

)
, (20)

where detH1(z) = z−k1 . The corresponding outer-like ma-
trix from the equation (11) can be given as

A+
1 (z) =

(
f11,1
d+11

⊕
d+22

(z) f12,1
d+11

⊕
d+22

(z)z−k1

f21,1
d+11

⊕
d+22

(z)zk1 f22,1
d+11

⊕
d+22

(z)

)
, (21)

Without loss of generality, if k1 > 0 , then by selecting the
CPM as follow

C+
1 (z) =

(
z−k1√

2
− z

−k1√
2

1√
2

1√
2

)
, (22)

the outer spectral PM of the stage one can be given by

S+
1 (z) =

(
g11,1f11,1

⊕
f12,1(z)z

−k1 g11,1f11,1
⊕
f12,1(z)z

−k1

g21,1f21,1
⊕
f22,1(z) g22,1f21,1

⊕
f22,1(z)

)
,

(23)
where gij,1 denotes a linear combination between the func-
tions f ij,1 in the equation (21).The emerging spectral factor
from our algorithm satisfies the power conditions as men-
tioned in equation (4), since by comparing the negative power
in R1(z) and S+

1 (z), it is possible to see that the maximum
negative powers of S+

1 (z) and R1(z) are equal. In the next
iteration, the linear combination followed by an appropriate
selection of the CPM is guaranteed to generate valid factors
for the second stage. In other words, in the first iteration the
spectral factors of the PM are extracted and following that it
is possible to preserve the spectral factor properties from one
iteration to another. Hence, the final spectral factors satisfy
the power conditions as given in (4), (5). Similarly, if k1 ≤ 0,
a suitable CPM is given by

C+
1 (z) =

(
1√
2

1√
2

− z
k1√
2

zk1√
2

)
, (24)

In the p × p case, let the target entry be reconstructed
from the jth entry and kth entry, in the lth iteration. Assume
also that by the (l − 1)th step, the jth entry and the ith entry
have already been combined and similarly the kth and jth

entries and without loss of the generality let i < j < k < r.
The previous statement relates to the general situation where
two entries have already been combined during the SBR2
reconstruction process and a third entry is going to be com-
bined with one of them at the next iteration. Furthermore,
we assume that the third entry has also been combined with
another entry at some stage.
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Without lose of generality, for kτ > 0 and kυ > 0, the
outer polynomial matrix in the (l − 1)th stage, S+

l−1(z), can
be computed by the outer PM of the 2× 2 sub-matrix and has
the general form as follows,

S+
1−1(z) =


f ii+z

−kτ f ij+ z
−kτ 0

f ji+ f jj+
. . . .
. . fkk+ z−kυ fkr+ z−kυ

0 . frk+ frr+

 ,

(25)
where fhf+ represents the linear combination between the
outer entries corresponding to the h and f entries from the
last time they were combined ; {h, f} ∈ {{i, j}, {k, r}}. If
detHl(z) = z−kl the outer-like PM can be given by

A+
l (z) =


uii+z

−kτ uij+z
−kτ gik+ z

−kl 0
uji+ gjj+ gjk+ z

−kl ujr+
. . . .

gkj+ z
kl ukk+ gkr+ zkl

0 urj+ urk+ z
−kl urr+

 ,

(26)
where uhf+ represents a linear combination of the entries h
and f in the (l−1)th iteration; {h, f} ∈ {{i, j}, {k, r}}, and
ghf+ represents a para-linear combination of entries h and f in
the (l − 1)th iteration (i.e. when a and/or b in equation (18)
are replaced by czkl , where kl ∈ Z and c ∈ R). For kl > 0,
by selecting a CPM of the form

C+
l (z) =

fii(z) = z−kl

z−kl√
2

−z−kl√
2

.
1√
2

1√
2

.

. . . . .
frr(z) = z−kl

 ,

(27)

it is straightforward to show that the CPM retains the actual
power of the outer-like matrix except for eliminating the pos-
itive powers (i.e. kl).
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