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ABSTRACT

We propose sparse approximation weighted regression (SPAR-
ROW), a method for local estimation of the regression func-
tion that uses sparse approximation with a dictionary of mea-
surements. SPARROW estimates the regression function at a
point with a linear combination of a few regressands selected
by a sparse approximation of the point in terms of the regres-
sors. We show SPARROW can be considered a variant of
k-nearest neighbors regression (k-NNR), and more generally,
local polynomial kernel regression. Unlike k-NNR, however,
SPARROW can adapt the number of regressors to use based
on the sparse approximation process. Our experimental re-
sults show the locally constant form of SPARROW performs
competitively.

Index Terms— Nonparametric local polynomial regres-
sion, multivariate regression, sparse approximation

1. INTRODUCTION

In this paper, we propose and study a new nonparametric
method for local multivariate regression — sparse approxima-
tion weighted regression (SPARROW) — which employs the
sparse approximation of a point in terms of the regressors. A
similar nonparametric approach is k-nearest neighbor regres-
sion (k-NNR) [1], which assumes that the k regressors nearest
to a test point produce similar regressands. Both approaches
can be considered variants of local polynomial kernel regres-
sion (LPKR) [2], which estimates the regression function at a
point by fitting a polynomial at that point.

In addition to local methods like k-NNR and LPKR, con-
siderable research has been aimed at global nonparametric
methods, for example, additive models (AMs) [3], and sparse
additive models (SpAM) [4]. In AMs, univariate methods are
employed to estimate a smooth function of each regressor —
in a model consisting of the sum of such univariate component
functions — avoiding the need to deal directly with multidi-
mensional inputs. In SpAM, the aim is to reduce the number
of component functions of an additive model [4]. Projection
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pursuit regression (PPR) [5] is an extension to AMs that is
able to model a more general class of functions.

Although methods for global parametric and nonparamet-
ric regression might minimize the mean error over the entire
dataset, it may not provide a good local fit. Local methods
like LPKR assume a local parametric model for the data [6].
In LPKR, one estimates the regression function at each point
by fitting a Taylor polynomial about that point. This can pro-
duce models that are locally constant, locally linear, locally
quadratic, etc., based on the order of the polynomial. Central
to this procedure is the minimization of a weighted sum of
squares error. Typically, the weights are defined by a decreas-
ing function of the distance between two points. SPARROW
defines these weights using the sparse approximation of the
test point. Implicit in this is the assumption that a test point is
better modeled by a sparse linear combination of the regres-
sors than by its proximity to them.

The advantages of data modeling with sparsity constraints
are well-documented [7–9], e.g., in uncovering the physio-
logical code of the mammalian primary visual cortex [10],
and in producing sparse codes of natural sounds [11], images
[12], musical audio [13]. Within the field of supervised learn-
ing, sparse representation classification [14] can outperform
standard approaches in difficult settings, e.g., speech recog-
nition in noise [15], and face recognition with occlusions,
misalignments, and illumination variation [14, 16]. Sparsity
has also been applied to variable selection, most notably in
the LASSO [17]. In the next sections, we define SPARROW,
and show how it is a variant of k-NNR and LPKR. Then we
present several experimental results comparing SPARROW
with these and other well-known approaches. We make avail-
able all our code to reproduce the figures in this paper here:
http://imi.aau.dk/∼bst.

2. SPARSE APPROXIMATION WEIGHTED
REGRESSION

Consider a dataset (or dictionary) of N observations, D :=
{(xi, yi)}i∈Ω, where the input xi = [x1i, . . . , xMi]

T ∈ RM
is associated with the output yi ∈ R. Let Ω := {1, 2, . . . , N}
index the dictionary. In nonparametric regression, one as-
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sumes yi = f(xi)+εi, where f(x) is an unknown but smooth
function and εi is some error independent of xi. Given D and
a point z, SPARROW estimates the regression function f(z)
by a linear combination of the outputs

f̂(z) :=
∑
i∈Ω

li(z,D)yi (1)

where li(z,D) is the ith effective weight, which SPARROW
defines as a function of the sparse approximation of z in D.

Instead of fitting a single model to the entire dataset, as in
global parametric and nonparametric regression, SPARROW
fits parametric models about each test point z by using, e.g.,
a zeroth, first-, or second-order Taylor expansion. We now
discuss how SPARROW defines the effective weights in (1)
to estimate the regression function at a given point.

2.1. Definition of effective weights

To obtain the local quadratic estimate of the regression func-
tion at z, we can approximate f(x) about z by a Taylor poly-
nomial of degree two

f(x) ≈ f(z) + (x− z)Tθz +
1

2
(x− z)THz(x− z) (2)

with θz := ∇f(z) the gradient of f(x), and Hz := ∇2f(z)
its Hessian, both evaluated at z. The problem now is to find
f(z), θz and Hz, such that we minimize the locally weighted
squared error about z for all measurements in D, i.e.,

min
f(z),θz,Hz

∑
i∈Ω

αi(z)
[
yi − f(z)− (xi − z)Tθz

− 1

2
(xi − z)THz(xi − z)

]2
(3)

where αi(z) is the ith observation weight, which can be de-
fined in several ways, e.g., by a kernel function [1, 18], or by
sparse approximation as done by SPARROW.

Now define the parameter supervector [2]

Θz :=
[
f(z),θz, vech(Hz)

]T
(4)

where vech(H) denotes the half-vectorization of the symmet-
ric M ×M matrix, i.e., the M(M + 1)/2-vector formed by
stacking the diagonal and lower triangular entries of Hz. De-
fine the diagonal matrix Az where its ith diagonal element is
the observation weight αi(z). By defining the matrix

Xz :=

1 (x1 − z)T vechT [(x1 − z)(x1 − z)T ]
...

...
...

1 (xN − z)T vechT [(xN − z)(xN − z)T ]


(5)

we can express the minimization in (3) as

min
Θz

∥∥∥A1/2
z

[
y −XzΘz

]∥∥∥2

2
(6)

where the regressands vector y := [y1, y2, . . . , yN ]T . The
parameters defined by the least-squares solution is [2]

Θ̂z =
(
XT

z AzXz

)−1
XT

z Azy (7)

provided XT
z AzXz is invertible. Finally, the local quadratic

estimate of the regression function at z is just the first element
of Θz, i.e.,

f̂(z) = eT1
(
XT

z AzXz

)−1
XT

z Azy =
∑
i∈Ω

βiyi (8)

where e1 has a one in its first row, and zeros in all others.
Hence, we see the ith effective weight in (1) is

li(z,D) = eTi AT
z Xz

(
XT

z AzXz

)−1
e1 (9)

In summary, SPARROW estimates the regression function
at a point z by computing (1) with effective weights given by
(9). If we use only the first column of Xz in (9), we produce
a locally constant estimate of f(z), i.e.,

f̂(z) = (1TAz1)−11TAzy =

∑
i∈Ω αi(z)yi∑
k∈Ω αk(z)

. (10)

Using M + 1 columns of Xz produces a locally linear es-
timate. And using all of Xz results in a locally quadratic
estimate. Using higher order polynomials as the local para-
metric model reduces the bias of the estimate [2, 18], but this
comes at the price of increased variance and computation time
because the number of local parameters to be estimated in-
creases exponentially. Additionally, higher order polynomials
do not offer significant improvement over the quadratic model
unless one seeks to estimate the gradient and the Hessian, i.e.,
θz and Hz in (3) [19].

2.2. Definition of observation weights

Since the effective weights in (9) are a function of the obser-
vation weights in (3), i.e., {αi(z) : i ∈ Ω}, the remaining
problem is to define the observation weights. If we define
them in the locally constant model (10) by a kernel func-
tion, we produce the Nadaraya-Watson regression (NWR) es-
timate [20]. In this direction, we can define the weights by

αi(z) := K
(

S(z,xi)/h
)

(11)

where K : R 7→ R+ is a kernel function, h > 0 is the band-
width, and S(z,xi) is the distance

S(z,xi) := (z− xi)
TV−1(z− xi) (12)

where V is either a diagonal matrix of the unbiased estimates
of the variances observed in the dimensions of the regressors
in D (in which case (12) is the scaled Euclidean distance), or
the unbiased estimate of the covariance of the regressors (in
which case (12) is the Mahalanobis distance).
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Dataset # observations (N ) # attributes (M ) k

Abalone 4,177 8 9
Bodyfat 252 14 4
Housing 506 13 2
MPG 392 7 4

Table 1. Summary of the four datasets we test. The last col-
umn indicates the tuned parameter k used in the experiments
involving k-NNR and Wk-NNR.

When we define the weights of the locally constant model

αi(z) :=

{
d(z,xi), i ∈ Nk(z) ⊂ Ω

0, else
(13)

where Nk(z) is the index set of the k nearest regressors of
z in D, then (10) produces k-NNR [1]. If d(z,xi) := 1,
then the bandwidth of the constant kernel from z is at least as
big as the largest distance between pairs of observations and
z, i.e., h ≥ maxi∈Nk(z) S(z,xi). In weighted k-NNR (Wk-
NNR), we define this weight as the reciprocal of the distance
d(z,xi) := 1/S(z,xi).

Contrary to NWR and k-NNR, SPARROW instead de-
fines the observation weights from the sparse approximation
of z in D. First, consider the matrix form of the normalized
regressors of the dictionary

D :=

[
x1

‖x1‖2
,

x2

‖x2‖2
, . . . ,

xN
‖xN‖2

]
. (14)

For an input z, SPARROW finds a solution to z ≈ Ds such
that s = [s1, s2, . . . , sN ]T has many zero elements. There
are a variety of ways to produce sparse approximations (see
[8, 9, 21] for reviews). In this work, we use the principle of
basis pursuit denoising (BPDN) [7], which poses the problem

min
s∈RN

‖s‖1 subject to
‖z−Ds‖22
‖z‖22

≤ ε2 (15)

where ε2 > 0 limits the signal to approximation error ratio.
Finally, SPARROW defines the ith observation weight using
the sparse approximation weights

αi(z) :=

[
S(z,xi)

minj∈Ω S(z,xj)

]−1
si
‖z‖2

(16)

where si is the ith element of s. The purpose of the first
coefficient is to weight by 1 the regressand of the regressor
closest to z; and the purpose of dividing the sparse approxi-
mation weight by ‖z‖2 is remove the influence of its length.
Thus, as for Wk-NNR, SPARROW weights more heavily an
observation closer to the query, but unlike Wk-NNR, only if
it has a nonzero coefficient in its sparse approximation with
D. When we substitute the weights αi(z) from (16) into (10)
we obtain the constant SPARROW (C-SPARROW) estimate.
And when we use these weights in (9), but use only the first
M + 1 columns of Xz, (1) produces the linear SPARROW
(L-SPARROW) estimate. Using all columns of Xz produces
the quadratic SPARROW (Q-SPARROW) estimate.

3. EMPIRICAL EVALUATION

We now compare the performance of SPARROW against sev-
eral other other well-established methods for local regression.
In all cases, we use the standardized Euclidean distance in
(12). We test NWR and its linear counterpart, local linear
kernel regression (LLKR) [1, 18], which solves (7) using the
first M + 1 columns of Xz in (5). For both NWR and LLKR
we adopt the Gaussian kernel in (11)

K(x) :=
1√
2π
ex

2/2. (17)

We also test k-NNR, Wk-NNR [1], for which we tune k by
cross-validation on the training data of each fold of the larger
cross-validation test. For a baseline, we test the global para-
metric approach of multiple linear regression (MLR) [22],
which assumes a linear form of the regression function

f(x) = [1,xT ]b (18)

and b is defined to minimize the mean squared error

b = arg min
b′∈RM+1

‖y − [1 XT ]b‖22 (19)

where the ith column of X is xi. To produce the sparse ap-
proximation for a test point in (15), we use the Spectral Pro-
jected Gradient Method for `1-minimization (SPGL1) [23],
with at most 20 iterations, and ε := 10−6.

We use four different datasets commonly used in regres-
sion (see Table 1).1 Except for Bodyfat, we standardize each
dataset such that its dimensions are zero-mean and have the
same variance. Figure 1 shows the mean squared error (MSE)
estimates of these algorithms from 10 independent trials of
10-fold cross-validation. We see that while MLR performs
well for Bodyfat and Abalone, it performs poorly for MPG
and Housing. On the other hand, we see that LLKR does ex-
tremely well for all datasets. This gain in performance comes
with an increase in computation as LLKR must compute (7).
Except for Abalone and Housing, we see that C-SPARROW
performs nearly the same as k-NNR and Wk-NNR. For Hous-
ing, C-SPARROW appears to be almost as good as LLKR.
This is surprising since, 1) C-SPARROW makes no assump-
tion of the number of neighbors to be used for each test point,
and 2) it is constructing a local constant estimation.

Table 2 shows the performance of L-SPARROW as com-
pared to C-SPARROW. One might expect that L-SPARROW
would perform better than C-SPARROW since it is a higher-
order model. However, a problem with local polynomial re-
gression for higher order polynomials (i.e., first- and second-
order) is that when the input is locally rank deficient, the so-
lutions to (7) become unstable. We resolve the problem by

1MPG, Abalone and Housing are from
http://archive.ics.uci.edu/ml/; Bodyfat is from
http://lib.stat.cmu.edu/datasets/.
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(a) Abalone dataset
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(b) Bodyfat dataset
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(c) Housing dataset
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(d) MPG dataset

Fig. 1. Boxplots for 10-fold cross-validation estimate of mean squared error (100 independent runs) for four different datasets.
Each box delimits 25 to 75 percentiles, and the red line marks median. Extrema are marked by whiskers, and outliers by pluses.

solving a regularized form of the weighted least squares opti-
mization in (3). We use the `2-norm of the local parameters as
the regularization term thus solving a ridge regression prob-
lem [24], i.e., instead of solving (6), we solve

min
Θz,λ

∥∥∥A1/2
z

[
y −XzΘz

]∥∥∥2

2
+ λ‖Θz‖22 (20)

where λ ≥ 0 is the ridge parameter. For a given λ, the solu-
tion becomes [22]

Θ̂(z) =
(
XT

z AzXz + λI
)−1

XT
z Azy. (21)

We tune λ in the same way as we do k, described above.
Nevertheless, while we see the performance of L-SPARROW
improve with respect to using (7), it remains inferior to C-
SPARROW.

4. CONCLUSION
In this work, we have proposed an adaptive variation of lo-
cal polynomial regression methods: NWR, LLKR, k-NNR

Dataset C-SPAR. L-SPAR. L-SPAR. w/ RR λ

Abalone 5 16 988 2× 10−3

Bodyfat 5 ×10−5 35 ×10−5 960× 10−5 2× 10−6

Housing 10 45 4304 2× 10−4

MPG 7 8 6335 2× 10−3

Table 2. A comparison of the MSE estimates obtained by
10 trials of 10-fold cross-validation of C-SPARROW and L-
SPARROW without and with ridge regression on the four
datasets. The last column denotes the ridge parameter used
to obtain the L-SPARROW estimate.

and Wk-NNR. NWR and LLKR use the entire dataset, and
weight the regressand of each regressor by a kernel function.
Alternatively, k-NNR and Wk-NNR use the regressands of
the k regressors closest to a point, to locally estimate the re-
gression function. With SPARROW, we propose using sparse
approximation to adaptively select which regressors to use,
and the weights of their regressands to estimate the regression
function at a given point. Our experiments show that con-
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stant SPARROW can be a competitive regression algorithm.
Our future work will analyze the situations where it makes
sense to describe data as a linear combination (including neg-
ative weights) of labeled data. Furthermore, one can use other
sparse approximation algorithms, such as greedy approaches,
which are typically less computationally expensive than con-
vex optimization approaches like BPDN.
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