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ABSTRACT

We propose a method for accurate real time indoor tracking
of tagged objects in Ultra High Frequency (UHF) Radio Fre-
quency Identification (RFID) systems. The method is based
on aggregated binary measurements and a model that captures
the uncertainty in the number of times that a tag is read while
it is in the reading range of an RFID reader. The measure-
ments represent numbers of readings of the tags in short time
intervals. The implementation of the method is based on par-
ticle filtering and its performance is demonstrated by exten-
sive computer simulations.

Index Terms— Radio Frequency Identification (RFID),
real time tracking, particle filtering, binary sensors

1. INTRODUCTION

Radio Frequency Identification (RFID) is a technology for
transferring of data from a tag attached to an object with the
purpose of its automatic identification and tracking. In this
paper the interest is in the use of Ultra High Frequency (UHF)
RFID systems for indoor tracking of objects with attached
passive tags and based on aggregated binary measurements.

For more than a decade, the RFID technology has seen
continuous technical advances combined with decreased cost
of equipment and tags, increased reliability in performance,
and a stable international standard around UHF passive RFID
[1]. An important application of the RFID technology is ac-
curate real time tracking of tagged objects in indoor envi-
ronments. This remains a very challenging problem due to
a number of reasons including missed detections in existing
systems. An important class of approaches to localization
and tracking of tagged objects is distance-based and relies on
measurements that are either received signal strength (RSS),
time-of-arrival (TOA), or time-difference-of-arrival (TDOA).
The main difficulty of these approaches is the quality of the
measurements, which are often distorted due to multipath and
other interferences existing in indoor environments [2].

Some recent efforts on real time tracking in indoor envi-
ronments include [3] and [4]. In [3], the authors use the RFID
system to estimate the trajectory of a robot by using passive
UHF RFID measurements. There, the tracking is “reader-
based” meaning that the RFID tags are placed at fixed, known
locations, and the mobile object has a portable reader [2]. In
[4], the authors present a UHF RFID location tracking system
that exploits the measured phases of the backscattered signals
from RFID tags using multiple spatially distributed antennas,
and they implement the tracking by extended Kalman filter-
ing.

In our paper, the tracking of the tagged objects is per-
formed by particle filtering [5]. This is a methodology that
is applied to nonlinear problems with possibly non-Gaussian
noises. The main objective of particle filtering is to track
distributions of unknowns, which in our case are the poste-
rior distributions of the locations and velocities of the tagged
objects. This is achieved by propagating a set of particles
of the possible values of the unknowns and associating with
them weights, thereby obtaining random measures that ap-
proximate the desired distributions. The nature of the prob-
lem of real time tracking of tagged objects in RFID systems
allows for the use of as many particle filters as there are tags
in the system. This is due to the fact that the source of the sig-
nal (backscattered by the tag) is clearly known to the readers.
Thus, each tagged object is tracked by a dedicated particle
filter, and all the particle filters used in the system operate
independently.

In a previous work, we studied the problem of indoor
UHF RFID tag tracking with particle filtering [6]. There, the
tracked objects were tagged with semi-passive tags, which
compared to standard RFID tags had additional functional-
ity. These tags could both sense backscatter communication
between commercial passive tags and RFID readers and com-
municate the sensed information to the reader after they were
queried [7]. The advantage of the system in [6] is that with
a set of many tags with fixed and known locations, one could
gather additional information about the location of the tagged

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 205



objects and use it for improved tracking. In [8], we showed
how to use novel semi-passive tags for improved localization
of tagged objects, and we introduced a model for the probabil-
ity of reading a tag that is a function of the distance from the
tag to the reader. In this paper, we make this model more re-
alistic by extending it to include variability of the probability
of detection of a tag.

The paper is organized as follows. In the next section, we
formulate the problem. In Section 3, we propose the solution
and describe its implementation. We present simulation re-
sults which show the performance of the method in Section 4.
In Section 5, we conclude the paper with some final remarks.

2. PROBLEM FORMULATION

Objects with attached RFID tags move in an area covered by
a mesh grid of L RFID readers with known locations. The
state vector of a tag at time instant t, where t = 1, 2, · · · , is
denoted by xt ∈ R4×1, and xt = [x1,t x2,t ẋ1,t ẋ2,t]

>. The
first two elements of the vector denote the coordinates of the
object at time instant t, and the remaining two elements are
the components of the velocities of the object. The tagged
object moves according to the model

xt = Axt−1 +But, (1)

where ut ∈ R2×1 is a noise vector with a known distribution,
and A ∈ R4×4 and B ∈ R4×2 are known matrices given by

A =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 and B =


T 2
s

2 0

0
T 2
s

2
Ts 0
0 Ts

 .

RFID readers are located on a mesh grid as displayed by
Fig. 1. Each reader has antennas with a field of view of 120◦,
so that with three sets of antennas, an RFID reader can read
tags in a circular area with radius r.

In the time interval between t − 1 and t, the readers send
N queries for reading the tags and in N attempted readings,
the readers in the proximity of the tag read it nij,t ≤ N times,
where i ∈ St is the index of the reader that has detected the
tag during the time interval (t − 1, t), j = 1, 2, 3 denotes
which particular antenna of the three antennas of the reader
has detected the tag, and St is the set of readers that have
detected the tag at time t.

For each t, the overall system has a set of readings for
a particular tag given by yt = {< nij,t, ij >: i ∈ St, j ∈
{1, 2, 3}} where ij indicates the ID number of the specific
antenna that reads the tag. The objective is to obtain for every
t, the posterior distribution of xt, p(xt|y1:t), where y1:t ≡
{y1, y2, · · · , yt}.
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Fig. 1. A network of RFID readers. Each node has tree sets
of antennas, each with a field of of view of 120◦.

3. PROPOSED METHOD

As already pointed out, each reader sends a number of queries
in a fixed time interval, denoted by N , and the tag of the ob-
ject is read n ≤ N times (here we drop all the subscripts to
simplify the notation). The number n depends on many fac-
tors including distance from the antenna, orientation of the
tag, and the multipath created by the indoor environment.

For a given distance from the reader, we assume that the
probability of the tag being detected by a reader is a random
variable, p(d), where d is the distance between the tag and the
reader. We model the distribution of p(d) by a Beta distribu-
tion with parameters α(d) > 0 and β(d) > 0, i.e.,

π(p(d)) ∝ p(d)
α(d)−1

(1− p(d))β(d)−1. (2)

The mean of the probability of detection of a tag at distance d
from the reader is assumed to have the form

E(p(d)) =
1

1 + ea(d−d0)
, (3)

where a > 0, and d0 > 0 is the distance from the reader at
which the probability of detection is equal to 1/2. Since the
mean of a Beta random variable is given by α(d)/(α(d) +
β(d)), we must have

α(d)

α(d) + β(d)
=

1

1 + ea(d−d0)
. (4)

In addition, if we assume that the variance of p(d) is σ2(d),
we can uniquely obtain the parameters α(d) and β(d) of the
Beta with mean as in (3) and variance σ2(d).
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When the object is at a distance d from the reader, the
number of times that it is read by the reader is modeled by a
binomial distribution, that is, the probability that the number
of reads is n is given by

P (n|p(d), d) =

(
N

n

)
p(d)n(1− p(d))N−n. (5)

Since p(d) is random, we would like to obtain the probability
of n by averaging over all random p(d) values using the Beta
distribution in (2). It can readily be shown that P (n|d) then
follows the Beta-binomial distribution, that is (here we use p
to represent p(d) for simplicity),

P (n|d) =

∫ 1

0

P (n|p, d)π(p)dp

=

(
N

n

)∫ 1

0
pn+α(d)−1(1− p)N−n+β(d)−1dp

B(α(d), β(d))

=

(
N

n

)
B(n+ α(d), N − n+ β(d))

B(α(d), β(d))
. (6)

where B(·, ·) is the Beta function.
With this result we are ready to implement a particle fil-

tering (PF) scheme that can track tagged objects based on
readings yt = {< nij,t, ij >: i ∈ St, j ∈ {1, 2, 3}}. Sup-
pose that at time instant t − 1 we have the random measure
χt−1 = {x(m)

t−1, w
(m)
t−1}Mm=1, which approximates the posterior

of xt−1. Typically, we would perform a resampling of the
particles x(m)

t−1 and obtain M resampled particles denoted by
x̄
(m)
t−1. Given these particles, we propagate xt according to

x
(m)
t ∼ π(xt|x̄(m)

t−1), (7)

where π(xt|x̄(m)
t−1) is the proposal distribution of x(m)

t . The
weights that are assigned to the particles are given by

w
(m)
t ∝

p(yt|x(m)
t )p(x

(m)
t |x̄(m)

t−1)

π(xt|x̄(m)
t−1)

, (8)

where

p(yt|x(m)
t ) =

L∏
i=1

3∏
j=1

[(
N

nij,t

)
f(x

(m)
t , nij,t)

]Iij(x(m)
t )

,

(9)
where

f(x
(m)
t , nij,t) =

B
(
nij,t + α(x

(m)
t ), N − nij,t + β(x

(m)
t )

)
B(α(x

(m)
t ), β(x

(m)
t ))

,

(10)
and Iij(x

(m)
t ) is an indicator function defined by

Iij(x
(m)
t ) =

{
1, x

(m)
1,t , x

(m)
2,t ∈ Rij

0, otherwise,
(11)

where Rij is the area of sensitivity of the jth antenna of the
ith reader.

In a standard PF algorithm, once the weights of the par-
ticles are computed according to (8), we normalize them
and form the random measure for the time instant t, χt =

{x(m)
t , w

(m)
t }Mm=1. This random measure is then used to ob-

tain the estimate of xt, for example, by using the minimum
mean square estimate

x̂t =

M∑
m=1

w
(m)
t x

(m)
t . (12)

The computation of the estimate of xt+1 follows the same
steps as that of the estimation of xt.

During the operation of the standard particle filter, the
weights of the particles that are in a good agreement with
the observations have increased values and by contrast, the
particles, which are unlikely given the observations, have de-
creased values. When the particles are generated in parts of
the space far away from the region compatible with the mea-
surements, their weights will be very small. We propose an
approach called constrained PF. With this method we first
sum the original weights before normalization, and if the sum
is below a certain threshold, we keep the particles in the re-
gion of interest (obtained from the intersection of the sensing
regions of the antennas that detect the target) and remove the
ones outside it. The removed particles are replaced with new
ones, which are generated uniformly in the region of interest.
The weights of the new particles are equal and the sum of
them is the same as the sum of the ones that are replaced.

4. NUMERICAL RESULTS

We obtained the parameters of the model in (3) by using an
Impinj Speedway Reader, which was connected to a single
6dBIC gain patch antenna, and we experimented with Alien
Squiggle RFID tags. Both the reader and the tags are com-
pliant with the ISO 18006C (EPC Gen 2) protocol. The tag
was placed in an orientation facing the reader at various dis-
tances from the reader’s antenna whose power level was set
to 23.5dBm. The reader was programmed to send out queries
for a period of 30s. We measured the probability of detection
as a ratio of the number of times the tag was read over the
total number of queries sent during the 30s period.

We modeled the observations of probability of detection
with the function in (3) as shown in Fig. 2 and estimated the
parameters of the model as â = 0.8471 and d̂0 = 5.2972. We
fitted the variances of the data with a six-degree polynomial
function as shown in Fig. 3 and obtained the coefficients of the
polynomial ci, i = 0, · · · , 6. Note that the variance is clipped
to zero when the distance is less than 1m or more than 8m.

In the first experiment, we deployed 5 × 5 readers with
a separation distance of L = 12m between them in a large
warehouse of size 48m × 48m. Our objective was to detect
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Fig. 2. The measured p(d) and the corresponding mean.
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Fig. 3. The estimated variance of p(d) and the corresponding
six-degree polynomial fitting.
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Fig. 4. A tracking example. The red line is the real trajectory
and the blue crosses are the tracking results. The green (light
grey) boxes indicate the time when a target appeared and the
purple (dark grey) ones show the first detection time.

and track the objects with tags (targets) during a period of 20s
with a sampling time Ts = 1s. The reader range was set to

r = 10m. Note that there are no false alarms when tracking
in RFID systems but missed detections are common.

The targets entered the region at any time. Each reader
had three antennas to provide a 360◦ coverage, each with a
120◦ field of view. We assumed that the p(d) at a given dis-
tance d in the field of view was the same.

Figure 4 shows the deployment of the readers and the tra-
jectories tracked by the considered constrained PF algorithm
as illustrated in Section 3. The tracking performance of the
algorithm is shown in Fig. 5.
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Fig. 5. The RMSE of position with constrained PF.
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Fig. 6. The RMSE of position with standard PF.

Figure 6 displays the tracking performance with standard
PF. The four curves with different colors represent the RMSEs
of the four targets, respectively. We can tell which curve cor-
responds to which target from the stating times of the tracks.
There are no missed detections in both cases. Obviously, we
obtain better performance with constrained PF which, when
necessary, replaces the far away particles with better ones.

In each of the next two experiments we generated 50 in-
dependent realizations. In the first experiment, we compared
the tracking performance with different separation distances
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Fig. 7. The average RMSE of position with different separa-
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L. Here L < 10
√

2m to provide for the full coverage. The
performance is shown in Fig. 7. One can tell that the closer
two readers are, the more accurate tracking results with L ∈
(8, 14)m. However, more readers will be needed to provide
full coverage of the whole region with smaller L.
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Fig. 8. Tracking performances with different ranges of the
readers’ field of view.

In the second of the two experiments, we studied the
tracking performance with readers’ field of views of 120◦

and 90◦. We see from Fig. 8 that with the smaller field of
view the PF had better tracking performance, provided that
the full coverage was satisfied. This requires more antennas,
and therefore is a more expensive solution.

5. CONCLUSIONS

In this paper we presented a method for tracking tagged ob-
jects in a Ultra High Frequency (UHF) Radio Frequency Iden-
tification (RFID) system. The tracking is based on aggregated
binary measurements, and it is implemented by particle fil-

tering. The aggregated measurements were modeled as ran-
dom outcomes of Beta-binomial distributions. The parame-
ters needed for the implementation of the method were ob-
tained from real-world experiments. The performance of the
method was analyzed by extensive simulations for antennas
with fields of view of 120◦ and 90◦, respectively. The track-
ing mean square error with antennas with field of view of 90◦

had a better performance.
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filtering for indoor RFID tag tracking,” in Proceedings of
the IEEE Statistical Signal Processing Workshop, Nice,
France, 2011, pp. 193–196.
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