
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

ICY: A USER-FRIENDLY ENVIRONMENT FOR ALGORITHM DEVELOPMENT AND
DEPLOYMENT

Fabrice de Chaumont, Stéphane Dallongeville, Thomas Provoost, Timothée Lecomte, Alexandre

Dufour, Jean-Christophe Olivo-Marin

Institut Pasteur, Quantitative Image Analysis Unit, CNRS URA 2582, 25 rue du Dr Roux 75015 Paris

ABSTRACT

Bioimage informatics has emerged as a new
interdisciplinary research endeavor for bringing the
power of computational and mathematical sciences
into the biological imaging arena. We describe an
open-source software platform, Icy, that proposes a
comprehensive framework for easy algorithm
development and deployment fostering community-
oriented efforts. Icy offers a platform to share and
publish collaborative algorithm developments, while
promoting re-usability and code sharing to ease the
development of new algorithms, and simplifying
user’s feedback and support through a community web
site.

Index Terms— Bioimage informatics, open
source, automated image acquisition, Java, visual
programming, script, reproducible research

1. INTRODUCTION

With the advent of modern microscopy, an entire
research field dedicated to developing specific image
processing and analysis algorithms to answer
biological questions has emerged. Yet, software
availability and the technical level of accessibility of
these algorithms remain two major issues. This is
mostly due to the wide portfolio of techniques and
methodologies required and developed in fields as
diverse as computer vision, signal and image
processing, computational modeling, optics,
biophysics and computer science [1-6].
Alongside the request for more accessible resources,
reproducible research [7] has emerged as a new
initiative that urges researchers to make full protocols
and software publicly available [8]. The underlying

methods thus become easier to apprehend, reproduce
and adapt to a similar problem [9]. In such an inter-
disciplinary context, adopting and fostering the
reproducible research philosophy raises a number of
issues: 1) how to decompose complex imaging
protocols into small individual tasks (from acquisition
to analysis) such that they become easily accessible
and adaptable to similar quantification problems? 2)
how to create a platform where experts from all
backgrounds can collaborate on protocol development,
share and publish them online? 3) how to promote re-
usability and code sharing to simplify the development
of new algorithms? 4) how to encourage user feedback
and provide proper support via regular bug corrections
and methodological improvements?
Here we describe Icy (icy.bioimageanalysis.org), a
community software platform that addresses these
issues by proposing a comprehensive framework that
strives to bridge the gap between the life science, bio-
imaging and image processing communities [10].
Other available software like ImageJ [11], Fiji [12] or
BioImageXD [13] also propose solutions to this
problem, but in a less coherent manner. Icy is a fully
integrated framework designed from the ground-up
using modern concepts in programming and
ergonomics, taking end-users and developers into
equal consideration through a community-oriented
paradigm. This is achieved via two key concepts: 1) a
plug-in-oriented Java-based software that is adapted to
the needs of biological imaging and simplifies the
development of new plug-ins; 2) a community web-
site to publish, share and manage algorithms and
protocols in a straightforward manner, fostering
interaction and collaborations between researchers
from all backgrounds. Taking advantage of this
framework, we and others have created a collection of
plug-ins available to the community, implementing
state-of-the-art algorithms for biological image

EUSIPCO 2013 1569745207

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

processing and analysis. We illustrate Icy on two
specific bioimage applications: automated image
acquisition and protocols.

2. CORE COMPONENTS

2.1 Kernel & Plug-ins

Icy structure is made of two layers: a kernel providing
core functionalities and a plugin management engine
that ensures inter-operability of plug-ins. The kernel of
Icy has been designed to provide as much freedom as
possible to the conception of plug-ins. The
development of plug-ins takes advantage of a rich
Application Programming Interface (API) based on 15
cutting edge open source libraries that facilitates the
development of algorithms, visualization tools,
database access, etc. Icy’s image API provides direct
access to sequences and enables the management of
image data through more than 100 different functions.
Those functions start from simple access, like raw
(x,y,c,z,t) pixel set in any data format, which is the
simpler but slowest access mode, to direct memory
access to linear buffers without copy, which drastically
increase the computation speed. All calls to the API
are thread-safe, encouraging parallel programing.
Plug-ins can be of different types. Depending on their
nature, plug-ins are integrated directly in the proper
section of the GUI: File importer/exporter plug-ins
appear directly in the application menu,
LUT/Histogram plug-ins in the inspector. Canvas or
Viewer plug-ins affect the way data are viewed and
appear directly in the menu of the same category.
Thanks to dependencies, it is possible to define new
types of plugins that can be further fetched by other
plug-ins. This inter-operability (Figure 1) encourages
the development of small, easy to maintain task-
focused plug-ins and maximizes their reusability, thus
improving reliability by reducing potential sources of
errors.

2.2 Graphical User Interface

The general interface provides consistent window
decorations (unified across all operating systems),
customization facilities such as color themes (also
called «skins»), and the ability to work in single- or
multiple-window mode. This design integrates a
number of popular GUI designs with which biologists
are already familiar. The GUI design essentially relies
on a ribbon toolbar, where all plug-ins can be easily

accessed and organized in tabs, groups and menus. To
facilitate the search of functionalities, we added*

#a
search field on top of the toolbar. This search field is
always present to receive queries. Each query is
processed both locally to access commands and local
plug-ins, and remotely to parse the online
documentation of the whole website. We also designed
a contextual window that gives access to advanced
contextual information and visualization components
such as a small image navigator, a Look-Up Table
manager component that implements contrast
enhancement, histogram interaction and color-map
editing for each channel independently. Visualization
of 3D data is performed via VTK (http://vtk.org),
enabling ray-cast volume rendering of biological
sequences. Other views (2D, montage, logarithmic,
orthographic projection and magnifier) are also
available.

Figure 1: Dependency map of plugin inter-operability. Each

arc connects two plugins that use each other’s
functionalities (30% of plug-ins are represented).

2.3 Website

All the necessary resources and information on Icy are
made available through a single, comprehensive
website, thus providing the community with a central
communication hub. This hub is composed of a

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

number of sections such as documentation, support,
blog, tutorial, FAQ. The website centralizes all
contributed material such as published plug-ins, scripts
and protocols (see below) which are publicly and
permanently available. They can be browsed online
and also directly from within the application and
installed on demand (Figure 2). To facilitate
navigation, the website enables cross-links between
plugin pages using tags, thus helping people
discovering other plug-ins. The website contains all
relationship information about plugins, therefore
during installation, Icy checks dependencies and
ensures that all required plug-ins and protocols are
automatically downloaded. The website also gives
high visibility to plug-ins by providing a public page
for each plugin that is maintained by its creator
through the content management system described
below. Furthermore, Icy is the only platform where
one can rate plug-ins directly from the website**, thus
creating a selection of the best and most popular plug-
ins available.

Figure 2: Plugins page sorted by rating and popularity on

the Icy website.

2.4 Content management

The content management system assists the developer
in deploying, monitoring and maintaining plug-ins.
The developer can enrich this page with a number of
information such as images, video, tags, links to
publication or website, iconography, splash-screens,
abstracts, slideshows and documentation which will
then be crawled by search engines. Icy also provides

per-plug-in automatic audit for developers to increase
their visibility.
The CMS handles the versioning and distribution of
plug-ins, which are automatically updated on the
desktop applications. It also allows the developer to
roll back to a previous version in case of major
problem (broken compatibility, missing feature,
broken package integrity, etc.). An automatic bug
report feature is provided to allow the user to inform
the developer a problem has occurred while using the
plug-in. Corrected plugins uploaded on the CMS are
automatically deployed. This mechanism increases
reliability of plug-ins. Non-public collaborations are
also supported by Icy: all CMS features are available
independently of the main website through private
repositories.

2.5 Augmented visualization

Icy provides two key components to manipulate and
annotate imaging data in context (Figure 3): 1) a
flexible annotation mechanism, enabling users to
create unlimited regions of interest on the image,
which are permanently saved for further editing, and
can be further exploited for targeted analysis. The
annotation mechanism also allows plug-ins to
incorporate custom annotations (ROI, text, analysis
results, etc.) and provide user-interaction. Once the
information is properly tuned and informative, a
screenshot feature allows capturing the fully annotated
data, producing high-resolution images suitable for
communication, scientific reports and publications; 2)
a multiple synchronized viewers system, allowing to
view the information in multiple ways, while
annotations and data are synchronized in real-time
across all viewers.

Figure 3: Different examples of plugins and their image

data visualization.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3. DEVELOPING WITH ICY

3.1 Rapid application development

Icy is fully written in Java. It comes with an internal
library called “EzPlug” that simplifies two redundant
and tedious aspects of plug-in development, writing
the graphical interface, loading and saving user
parameters and allowing the user to interrupt a running
process. EzPlug allows creating standardized user
interfaces without requiring any knowledge in
graphical programming. For each parameter declared
by the developer, a graphical component is
automatically generated, and is tailored to receive user
input depending to the parameter type (e.g. drop-down
lists, bounded values, check boxes, etc.). The final
generated interface lays out all graphical components
in an ordered manner, and adds a control panel with
action buttons to run or interrupt the plug-in, and to
import or export user parameters.

3.2 Protocols

Protocols are a graphical front-end that implement
software development by enabling end-users to design
image processing pipelines (termed ‘protocols’) in a
graphical manner, without any programming
knowledge. A protocol is constructed by assembling
blocks representing elementary image processing
tasks, and linking input and output via connecting lines
(Figure 3). Protocols provide facilities such as
switches, loops, automatic parameter checking and
scheduling to ensure consistent execution. A protocol
and its parameters may be saved and submitted to the
Icy website for immediate sharing and/or perma-
linking in a publication. Any such protocol may then
be downloaded and seamlessly installed (all required
plug-ins are automatically installed). Any user can
hence re-run a given protocol using the original
parameters, and further edit the pipeline by adjusting
parameters or adding and removing blocks.

Figure 3: Protocol development through Protocol Editor.

3.3 Scripting in JavaScript and Python

To complete functionalities that may not exist as an
already developed block for protocols, and to enable
the creation of code directly within Icy, we released***
a full scripting suite directly accessible under Icy. To
help using the API, we created a specific editor
enabling auto-completion of code, and parsing the
documentation directly inside the source code of the
existing objects. This editor also indicates with
symbols where exactly errors specified by the
compiler are located. As for plug-ins and protocols,
script resources are centralized online on the website.
Fifty scripts of different complexities are shared
online****. They can be browsed and examined online
with the proper syntax highlighting.

4. EXAMPLES OF EXISTING TOOLS

4.1 Computerized control of image acquisition
hardware

New challenges in bioimaging impact the microscope
acquisition process. Biologists need automation tools
managing the observation of samples over long period
of time, and assisting in the detection of biological
events. Optimizing image interpretation calls for real
time analysis tools coupled with augmented
quantitative information over the images. These new
requirements imply a direct link between the control of
the microscope and the image analysis platform: this
link can be implemented via software such as the
open-source package Micro-Manager (www.micro-
manager.org). We have associated Micro-Manager and
provide Icy bundled with a patched version of Micro-
Manager. This patched version removes all the
redundancies between Micro-Manager and Icy’s
functionalities, combining its powerful hardware
control abilities with the advanced visualization tools
provided natively by Icy (rich look up tables in 2D/3D
and 3D ray-casting thanks to VTK). The Icy
visualization system also allows observing a same
sequence within different viewports with different
settings to literally set up cameras to watch structure of
samples. A real time 3D acquisition example using
multi-viewport can be found at
http://youtu.be/7j7xFwF_PlU. Icy also provides a
framework that allows several plugins to access
Micro-Manager. This enables user-customizable
combination of automatic tools. For instance a first
plugin tracks a cell and drives the x-y stage, a second

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

displays the acquisition in 3D and a third one
simultaneously performs an analysis over the image
for real time quantification (Figure 4).

Figure 4: Micro-Manager for Icy in action, demonstrating

live acquisition combined with 4D visualization.

4.2 Intelligent image acquisition and analysis

One of the main advantages of Icy is to enable the
creation of very complex tools in a simple manner.
Thanks to the communication between all modules of
Icy, one can create an execution pipe either with
scripts or protocols and obtain a live chain of multi-
threaded analysis able to respond in real time. Then,
the different displays of Icy help augmenting and
enriching a scene by adding overlays on top of the live
acquisition display provided by Micro-Manager. Those
views act as helpers that perform analysis directly over
a live stream. All the algorithms present in Icy can be
used in such schemes and help the end-user (in our
case a biologist) examine if the context of the sample
corresponds to the one of the acquisition. Thanks to
this augmented visualization, it then becomes possible
to monitor in live the information content and the
quality of a scene through examination of parameters
such as cell density, colocalization, counts, shape and
inter-distances.

5. REFERENCES

1. Swedlow J.R., Goldberg I., Brauner E. and Sorger

P.K., “Informatics and quantitative analysis in
biological imaging”, Science, 300, no. 5616, pp.
100-2 (2003)

2. Peng, H., Ruan, Z., Long, F., Simpson, J.H., and
Myers, E.W. “V3D enables real-time 3D
visualization and quantitative analysis of large-
scale biological image data sets”, Nature

Biotechnology, 28, no. 4, pp. 348-353 (2010).
DOI: 10.1038/nbt.1612.

3. Kalinka, A.T., Varga, K.M., Gerrard, D.T.,
Preibisch, S.W., Corcoran, D.L., Jarrels, J., Ohler,
U., Bergman, C.M. and Tomancák, P., “Gene
expression divergence recapitulates the
developmental hourglass model”, Nature, 468, no.
7325, pp. 811-814 (2010)

4. Meijering E., Jacob M., Sarria J. C. F., Steiner P.,
Hirling H., Unser M. “Design and Validation of a
Tool for Neurite Tracing and Analysis in
Fluorescence Microscopy Images”, Cytometry
Part A, vol. 58, no. 2, pp. 167-176 (2004)

5. Zimmer C., Zhang B., Dufour A., Thébaud A.,
Berlemont S., Meas-Yedid V., Olivo-Marin J.-C.,
“On the digital trail of mobile cells”, IEEE Signal
Processing Magazine, 23, no. 5, pp. 54-62 (2006).

6. Chenouard N., Dufour A. and Olivo-Marin, J.-C.,
“Tracking algorithms chase down pathogens”,
Biotechnology Journal, 4, no. 6, pp. 838-45 (2009)

7. Fomel S. and Claerbout J., "Guest Editors'
Introduction: Reproducible Research", Computing
in Science and Engineering, 11, no. 1, pp. 5–7
(2009). DOI:10.1109/MCSE.2009.14

8. Ince, D.C., Hatton, L. and Graham-Cumming J.
“The case for open computer programs”, Nature,
482, 485–488 (2012). DOI:10.1038/nature10836

9. Vandewalle, P., Kovacevic, J. and Vetterli, M.
“Reproducible Research in Signal Processing -
What, why, and how”, IEEE Signal Processing
Magazine, 26, no. 3, pp. 37-47 (2009)

10. de Chaumont F, Dallongeville S, Chenouard N,
Hervé N, Pop S, Provoost T, Meas-Yedid V,
Pankajakshan P, Lecomte T, Le Montagner Y,
Lagache T, Dufour A, and Olivo-Marin, J.-C.
“Icy: an open bioimage informatics platform for
extended reproducible research”, Nature Methods,
9, 7, pp. 690-6 (2012)

11. Rasband, W.S., ImageJ, U.S. National Institutes of
Health, Bethesda, Maryland, USA,
http://imagej.nih.gov/ij/, 1997-2011.

12. Fiji : http://fiji.sc	

13. BioImageXD : http://www.bioimagexd.net

*,**,*** Features added respectively on January, February and
March 2013.
**** Count as of June 2013.

5

