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Abstract—Music source separation aims at decomposing mu-
sic recordings into their constituent component signals. Many
existing techniques are based on separating a time-frequency
representation of the mixture signal by applying suitable model-
ing techniques in conjunction with generalized Wiener filtering.
Recently, the term α-Wiener filtering was coined together with
a theoretic foundation for the long-practiced use of magnitude
spectrogram estimates in Wiener filtering. So far, optimal values
for the magnitude exponent α have been empirically found in
oracle experiments regarding the additivity of spectral magni-
tudes. In the first part of this paper, we extend these previous
studies by examining further factors that affect the choice of
α. In the second part, we investigate the role of α in Kernel
Additive Modeling applied to Harmonic-Percussive Separation.
Our results indicate that the parameter α may be understood
as a kind of selectivity parameter, which should be chosen in a
signal-adaptive fashion.

I. INTRODUCTION

Music signals can be understood as superposition (mixture)

of different sound sources (components), such as melodic

instruments, singing voice, bass, and drums. Music source

separation aims at recovering these constituent component

signals from the mixture. The separated sources may be used

for music retrieval tasks, automatic music transcription, as well

as music production and restoration, see [1] for an overview.

At the core, many source separation techniques try to extract

the target component signal from the mixture by means of

time-variant filtering. In practice, this filtering procedure is

commonly realized by element-wise weighting of the mix-

ture’s short-time Fourier transform (STFT) with some kind

of time-frequency (TF) mask. Besides the wide-spread use of

binary masks [2], many approaches use so-called soft masks.

The most common strategy to construct soft masks is to use

generalized Wiener filtering [3]–[5]. Loosely speaking, this

procedure consists of first estimating the spectrogram of the

target source and subsequently taking its ratio to the sum of all

source spectrogram estimates as the filter weight. In order to

disambiguate the usage of the term spectrogram throughout the

literature, we use the notion of an α-spectrogram as introduced

in [5], meaning the modulus of the STFT raised to some

arbitrary exponent α ∈ [0, 2]. With this clarification, Wiener

filtering relies on the rather strong assumption that the sources’

α-spectrograms add up to the mixture’s α-spectrogram. This

completely neglects possible phase-related issues, such as

destructive interference [6]. While some research effort has

been dedicated to incorporating phase information [6]–[8],

other authors have attempted to find more appropriate masking

strategies. In [4], an alternative family of TF masks based

on well-known divergence measures such as the Kullback-

Leibler and Itakura-Saito was proposed. In a similar fashion,

[9] tried to find an optimal magnitude exponent (among other

parameters) in diverse source separation tasks. Oracle source

separation experiments with known component signals were

conducted in [10] in order to identify a domain satisfying the

additivity assumption of spectral magnitudes. Similar settings

were used in [5], where the authors also established a theoretic

foundation for using magnitude instead of power spectra (i.e.,

α = 1 instead of α = 2) in Wiener filtering.

From the literature, we see that the magnitude exponent α is

considered to be an important parameter, which is not fully

understood yet. In this paper, we take a different perspective

and investigate two aspects of α in an experimental fashion.

In Section II, we extend the oracle experiments from [5] in

order to assess the dependency of the additivity assumption of

α-spectrograms on the signal type as well as other influential

factors. In Section III, we asses the influence of α in Kernel

Additive Modeling (KAM), a recently proposed [11] source

separation procedure that strongly relies on iteratively applying

Wiener filtering. As we will show, α can be understood

as a selectivity parameter to trade off between interference

reduction and artifacts depending on the target signal type.

II. ADDITIVITY OF α-SPECTROGRAMS REVISITED

In this section, we present the settings and results of oracle

experiments on the additivity assumption of α-spectrograms.

As in related studies [5], [10], we work with known source sig-

nals in order to create a controlled scenario that is independent

of specific source separation methods. Our initial question is if

it is beneficial to choose α differently depending on whether

we want to separate a saxophone solo from accompanying

instruments or if we want to separate drum instruments from

a drum solo recording.

A. Notation and Signal Model

Let x : Z → R be the real-valued, discrete-time domain

mixture signal that is based on the linear superposition x :=
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Fig. 1. Illustration of our signal model. (a): Mixture signal x := x1 + x2, which is the superposition of two source signals x1 and x2. (b): Magnitude
spectrogram of the mixture V and the sources V1 and V2. For better visibility, we use a logarithmic frequency axis and logarithmic magnitude.

x1 + x2 of two component signals corresponding to the indi-

vidual sources. Example component signals are illustrated in

Figure 1(a), where x1 is a harmonic melody instrument and x2

is a percussive accompaniment. We will return to these specific

music signal properties in Section III. As already discussed,

we transition to the TF domain as depicted Figure 1(b). To this

end, let V (k,m) be the non-negative modulus of the STFT at

the kth spectral bin and the mth time frame. As shown in the

top plot of Figure 1(b), we assume that the α-spectrograms

V1 and V2 approximately add up to the mixture:

Vα ≈ Vα
1 +Vα

2 . (1)

Here, the magnitude exponent α ∈ [0, 2] is applied in an

element-wise fashion. Although our notation easily extends

to the more general scenario involving an arbitrary number

C ∈ N of sources, we will restrict ourselves to the case

C = 2 in the following discussion for the sake of clarity.

B. Signal-Dependency of α

First, we repeat a similar experiment as in [5], using multi-

track recordings to quantify the additivity of α-spectrograms

under varying α. The basic protocol is to create linear mixtures

from oracle source signals and then switch to the TF domain to

assess the additivity assumption. With respect to our running

example (see Figure 1), this can be formalized as computing

a suitable divergence D between the mixture’s α-spectrogram

and the sum of the sources’ α-spectrograms as

D (Vα,Vα
1 +Vα

2 ) for α ∈ [0.2, 2] . (2)

As in [5], the metric D can be either the α-dispersion,

Itakura-Saito, or Kullback-Leibler divergence. In our exper-

iments, we use source signals from the “QUASI”1 data set.

This set consists of several full-length songs from diverse

music genres, each providing single track recordings of the

1http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/

involved sources, such as singing voice, melodic instruments,

bass, drums, or percussion. Thus, the set covers a broad

range of different signals characteristics, in the sense that

it contains harmonic as well as percussive instruments with

varying degree of interdependence between them.

In particular, we are interested if the results reported in [5]

generalize to other, more homogeneous types of music record-

ings. Thus, we extend the experiment with two additional data

sets. The first consists of all single tracks of the “Bach10”2

and “TRIOS”3 corpora, which are dominated by harmonic

instruments, such as violin, viola, bassoon, horn, clarinet,

and piano. It should be noted that one piece in the TRIOS

corpus contains three drum tracks, these have been excluded

for our experiment. The second set uses drum only recordings

from the “IDMT-SMT-Drums” data set4, where the sources

correspond to the three drum instruments kick, snare, and hi-

hat [12]. Across all sets, the audio items are in uncompressed

PCM WAV format with 44.1 kHz sampling rate, 16 Bit, mono.

As for the STFT parameters, we adopt the settings from [5],

using Hamming-windowed frames of approx. 80 ms duration

and 80% overlap between them.

As is shown in Figure 2(b) we can not exactly replicate the

curves reported in [5] (dashed lines) but the tendencies are

similar. However, we can indeed see a different behavior of

the curves in Figure 2(a) and (c). Besides different minimum

positions, it is remarkable that the curves in (c) are much

flatter. As a tendency, one might say that for drums, the

range of possible quasi-optimal α is much broader than with

harmonic instruments. As we will show in the next section,

these results should be read with great care, since there are

more factors involved than just the signal types.

C. Level-Dependency of α

In this second experiment, we basically repeat the same

protocol as before. This time, the only difference is that each

2http://www.ece.rochester.edu/∼zduan/resource/Resources.html
3http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27
4http://www.idmt.fraunhofer.de/en/business units/smt/drums.html
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Fig. 2. Average α-dispersion, Itakura-Saito and Kullback-Leibler divergences
as a function of α. Global minimum positions are are marked with a circle.
The legend in (c) applies to all plots. (a): Results obtained with purely
harmonic sources (Bach10 & TRIOS data sets). (b): Results obtained with
harmonic and percussive sources (QUASI data set). The dashed lines provide
the original results from [5] for comparison, diamond markers represent the
respective minimum positions. (c): Results obtained with purely percussive
sources (IDMT-SMT-DRUMS dataset).

source signal is normalized so that its absolute maximum

value is 1.0 before adding them up to the linear mixture.

Since the normalization factor depends on the properties of

the respective signal, the normalization step is expressed by

introducing modified sources signals x1 and x2 in

x := x1 + x2. (3)

As can be seen in Figure 3, this simple modification

affects the results quite a lot. As expected, the Itakura-Saito

divergences (black curves) stay the same for all data sets,

since they are less susceptible to level differences. The

α-dispersion (red curves) look like scaled versions of the

ones in Figure 2, a direct consequence of its calculation

rule given in [5]. For the QUASI data set, the scaling is so

pronounced that the curve is out the plot range in Figure 3(b).

However, at least the minimizing α-values stay the same. In

contrast, the Kullback-Leibler divergences (blue curves) look

completely different and the minimizing α-values end up in

different positions, so the choice of an optimal α for a certain

signal type becomes questionable. From the empirical results

in [5], one could get the impression that an α ≈ 1.2 is a

sensible choice for general purpose music source separation

(see Figure 2(b)). Our results rather indicate that the choice of

α is sensitive to a number of additional factors. This is in line
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Fig. 3. Three different divergences are shown as a function of α, the same
description applies as in Figure 2. (a): Normalized Bach10 & TRIOS sources.
(b): Normalized QUASI sources. The curve for α-dispersion is outside the
plot range. (c): Results from normalized IDMT-SMT-DRUMS sources.

with the findings in [10], where also the number of sources

C has been shown to be influential. Other factors, such as the

mutual correlation between the sources remain completely

nebulous and should be addressed in further studies.

III. INFLUENCE OF α IN KERNEL ADDITIVE MODELING

After these oracle-based experiments, we now want to study

the influence of α in a concrete source separation scenario.

In particular, we consider the task of “Harmonic-Percussive

Separation” (HPS) as a specific case study. HPS aims at

splitting a music recording into harmonic (e.g., melodic in-

struments, tonal components) and percussive (e.g., drums and

percussion, transient components) sources, see Figure 1 for an

example. A high quality HPS is an important pre-requisite for

advanced sources separation tasks such drum transcription and

separation [12], [13].

A comprehensive overview of recent methods for HPS is

given in [14]. Many works already discussed the problem that

music recordings may consist of sounds that are neither clearly

harmonic nor percussive [15], [16]. An example are harmonic

tones, whose fundamental frequency is modulated over time

as is typical in recordings of instruments with vibrato. We

neglect this problem in our study for the sake of compactness.

A. KAM-Based HPS

Recently, a novel class of source separation approaches

was proposed under the notion of Kernel Additive Model-
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Fig. 4. Overview of the KAM-based algorithm for HPS. The gray box stands
for iterative refinement.

ing (KAM) [11], [17]. In contrast to global decomposition

paradigms (e.g., Non-negative Matrix Factorization), KAM

exploits local regularities of the source spectrograms. An HPS

variant based on KAM was introduced in [18], which is also

the main technique used in our study. The method relies on

iteratively modeling the component spectrograms and applying

Wiener filtering as depicted in Figure 4. With respect to our

two-component signal model, the α-Wiener mask for the two

components is computed as

Mc := V̂α
c �

(
V̂α

1 + V̂α
2

)
for c ∈ {1, 2}, (4)

where � denotes element-wise division, V̂1 represents the

harmonic and V̂2 the percussive component estimate.

In our reimplementation of KAM-based HPS, we set the initial

estimate V̂
(0)
1 and V̂

(0)
2 to the mixture α-spectrogram Vα. As

in [18], we construct two kernels I1 and I2 for the enhance-

ment of harmonic and percussive structures. As illustrated by

Figure 4, the harmonic kernel is all zero accept one horizontal

row and the percussive kernel shows a perpendicular structure.

We introduce the iteration index � = 0, 1, 2, . . . , L ∈ N and

proceed with iterative refinements by first applying a kernel-

based filtering to each of the components and subsequently

applying (4). It should be noted that the original procedure

in [18] applies 2D median filters in the kernel-based filtering

stage. In contrast, we use 2D convolution with the kernels

I1 and I2. The rationale behind replacing median filtering by

convolution is that we want to eliminate any other nonlinear

operations besides raising the STFT modulus to the magnitude

exponent α in (4).

B. Evaluation in HPS Task

To investigate the influence of α-Wiener filtering in KAM-

based HPS, we generate one test item by superimposing a real-

world trumpet melody (harmonic) with castanets (percussive).

The experimental settings are the same as in [18], using

an STFT blocksize of 4096 samples (approx. 92 ms) and a

hopsize of 1024 samples (75 overlap). Kernels of 17 × 17
elements are used for KAM, and the number of iterations is set

to L = 10. At each iteration, the iSTFT for the harmonic V̂
(�)
1

and the percussive component estimate V̂
(�)
2 is computed using

the mixture’s phase spectrogram to yield the time-domain

reconstructions x̂1 and x̂2 respectively. In accordance to the

standards used in the literature on music source separation, we

employ the Perceptual Evaluation Methods for Audio Source

Separation (PEASS) [19], [20] in order to evaluate the quality

of the reconstructed component signals. In contrast to the

experiments in the original paper, we vary the α-parameter

in (4) in order to assess its influence on this procedure.

In Figure 5, we show the evolution of four perceptually

motivated PEASS metrics with increasing iteration count �
for the harmonic component in (a) and the percussive compo-

nent in (b). The metrics comprise the artifact-related (APS),

interference-related (IPS), target-related (TPS) and overall

perceptual score (OPS), which can attain a maximal score of

100 in case of a perfect separation. In Figure 5(a), it can be

seen that the OPS benefits from higher α but quickly saturates

already after a few iterations. As expected, the artifacts-related

APS drops with increasing �, while the interference-related IPS

improves. In Figure 5(b), the percussive component attains

much lower APS even for α = 1, probably due to pre-echos

that occur when using large STFT blocksizes in conjunction

with the mixture phase for reconstruction of transient signal

components [21]. Informal listening tests confirmed that pre-

echos are indeed an issue. However, it is interesting that the

OPS and interference-related IPS can go much higher than

for the harmonic component, and seem to be less susceptible

to changing α. This indicates that it might be beneficial to

use α ≈ 1 if we are interested in extracting the percussive

component and α ≈ 2 for the harmonic component. We also

want to stress how easily the PEASS scores can be increased

or decreased by just changing α. In competitive evaluation

campaigns such as SiSec5, often a few score points can decide

over the ranking of submitted source separation algorithms.

The susceptibility to such basic parameters as the magnitude

exponent α sheds a new light on the interpretation of these

competition results.

IV. CONCLUSION

In this paper we reported results of exploratory experiments

on the influence of the magnitude exponent α with respect

to the additivity assumption as well as Wiener filtering in

KAM-based HPS. Empirically, we show that the choice of

α is sensible to several factors, such as the signal types, the

relative mixing levels and the number of sources. In KAM-

based HPS, where α-Wiener Filtering is applied iteratively,

there is a delicate trade-off between softer separation with

α = 1 compared to stronger selectivity and faster convergence

at the cost of undesired artifacts for α = 2. Future work will be

directed towards developing strategies for α-Wiener filtering

that are adaptive to signal types, temporal evolution or even

local spectral characteristics of the target sources.

5https://sisec.inria.fr/
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Fig. 5. Evolution of the PEASS measures plotted along the iteration count �. (a): Results for the harmonic component signal. (b): Results for the percussive
component signal.
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