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ABSTRACT
This paper proposes a multi-class learning (MCL) algorithm
for a deep neural network (DNN)-based statistical parametric
speech synthesis (SPSS) system. Although the DNN-based
SPSS system improves the modeling accuracy of statistical
parameters, its synthesized speech is often muffled because
the training process only considers the global characteristics
of the entire set of training data, but does not explicitly con-
sider any local variations. We introduce a DNN-based context
clustering algorithm that implicitly divides the training data
into several classes, and train them via a shared hidden layer-
based MCL algorithm. Since the proposed MCL method
efficiently models both the universal and class-dependent
characteristics of various phonetic information, it not only
avoids the model over-fitting problem but also reduces the
over-smoothing effect. Objective and subjective test results
also verify that the proposed algorithm performs much better
than the conventional method.

Index Terms— Statistical parametric speech synthesis,
deep neural network, context clustering, shared hidden layer

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) systems with
context-dependent hidden Markov models (HMMs) have
been researched in recent decades [1]. However, such synthe-
sized speech remains unnatural, mainly due to the problems
of vocoding and statistical modeling [2]. Zen et al. pro-
posed a deep neural network (DNN)-based SPSS system to
improve modeling accuracy; specifically, they attempted to
overcome an over-fitting problem of a decision tree-based
state clustering paradigm [3]. In DNN-based SPSS sys-
tems, a centralized network enables compact modeling of
the complex dependencies between input contexts and output
acoustic features. Various analyses have also confirmed that
DNN-based SPSS systems perform significantly better than
HMM-based ones [3–6].

A limitation of DNN-based acoustic modeling is that it is
not suited to representing temporal variations in speech be-
cause it adopts a frame-by-frame modeling method. Typi-
cally, the problem can be relieved by utilizing a speech pa-
rameter generation (SPG) algorithm to produce a smooth tra-
jectory of acoustic features [7]. However, this often results
in over-smoothed outputs because the DNN only estimates
the mean values of acoustic features. Note that in the HMM-
based SPSS systems, the input space is first divided into sev-

eral classes, and then the mean and variance of each class
are modeled by a Gaussian mixture model (GMM). On the
other hand, the DNN output cannot represent the local vari-
ance (LV) of acoustic features because the single network is
trained from the entire data set without considering localized
signal characteristics. In other words, since the training pro-
cess with the single network generates statistically averaged
outputs, it cannot clearly identify the characteristics of vari-
ous phonetic information. Therefore, the synthesized speech
often becomes muffled due to over-smoothing effect.

The problem can be reduced by introducing a number
of networks, such that each network individually models the
unique characteristics of each phoneme class. However, this
approach is structurally inefficient, and it is difficult to avoid
the over-fitting problem that typically occurs when the train-
ing database is comparatively small. Consequently, it is very
important to develop an alternative modeling algorithm that
balances the trade-off between the problems of over-fitting
and over-smoothing.

This paper proposes a DNN-based multi-class learning
(MCL) algorithm that consists of two networks: a context
clustering network and an MCL network. The former is used
to segment the training data into several classes, and each seg-
mented class is trained by the latter network. In the context
clustering network, one of the hidden layers is replaced by a
bottleneck layer, the output of which is then used as a clas-
sifier. Since the activation of bottleneck unit compactly rep-
resents the relationship between linguistic features and cor-
responding acoustic features [8], the training data can be ef-
fectively clustered into several classes with common statisti-
cal characteristics. Furthermore, the LVs obtained from each
class are used for the SPG algorithm, which is highly efficient
at reducing the over-smoothing effect.

In the proposed MCL network, clustered input and out-
put features are trained using a shared hidden layer (SHL)
structure [9, 10]. During the training process, the hidden lay-
ers are trained to model the universal attributes among the
different classes, whereas the regression layers are trained to
represent class-dependent characteristics. Since all the infor-
mation for each class is shared with hidden layers, the over-
fitting problem can also be minimized. Consequently, by in-
troducing the DNN-based context clustering and SHL-based
MCL algorithms, the proposed system successfully reduces
both over-smoothing and over-fitting problems. Experimen-
tal results also verify that the synthesized quality of proposed
system is superior to the conventional approach.
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Fig. 1. Framework of the DNN-based SPSS system: (a) conventional algorithm, (b) proposed DNN-based context clustering
algorithm, (c) proposed SHL-based MCL algorithm.

2. DNN-BASED SPSS SYSTEM

This section provides an overview of a conventional DNN-
based SPSS system and its limitations. The schematic in
Fig. 1. (a) shows a typical DNN-based SPSS system. A cen-
tralized DNN constructs a non-linear mapping function be-
tween linguistic features and corresponding acoustic features.
In the training step, the contextual information is first ana-
lyzed, and then the sequences of input features are prepared.
The output features are composed of acoustic features with
their temporal dynamics [11]. The DNN weightings are then
trained in order to minimize the mean square error between
target and estimated outputs with regard to given inputs.

In the test step, the contextual information of the given
text is first converted to the input features, which are then
utilized by the trained DNN to estimate the output features.
Since the DNN cannot generate smoothed output in the tem-
poral domain, the SPG algorithm should be applied to the
output features in order to generate continuous trajectories
of speech parameters. Note that the estimated output and
the pre-computed global variance (GV) are regarded as a
mean and a variance vector of the SPG algorithm, respec-
tively [3]. Finally, a speech synthesis module synthesizes a
speech waveform with the generated parameters.

The quality of synthesized speech is quite good compared
to the conventional HMM-based approach; however, it still
sounds muffled, mainly due to the following two factors.
Firstly, a single network cannot capture the diverse charac-
teristics of phonetic information, since the DNN weightings
are obtained from the entire training data set without con-
sidering its local characteristics. As a result, parameters that
have phonetically different natures are statistically averaged

during the model training process. Secondly, its structural
limitations preclude estimating the variance of parameters
which is required for the SPG algorithm. Since a single
GV pre-computed from the entire training data is used, this
approach is not appropriate to represent the dynamically
evolving characteristics of speech parameters. Therefore,
an alternative form of training algorithm, that overcomes the
structural limitation of DNN-based acoustic modeling, should
be developed to generate parameters for synthesis.

3. MULTI-CLASS LEARNING ALGORITHM
FOR A DNN-BASED SPSS SYSTEM

This section describes an MCL algorithm for the DNN-based
SPSS system. The proposed system consists of the following
two networks. The first network (i.e., a context clustering
network) clusters linguistic input features and corresponding
acoustic output features into several classes. Then, each class
of the input-output pairs is trained with the second network
(i.e., an MCL network).

3.1. DNN-based context clustering

Before training the model, the input linguistic and output
acoustic features should be clustered into several classes in
order to avoid over-smoothing the speech parameters. We
propose a DNN-based context clustering algorithm where the
bottleneck layer, which consists of a relatively small num-
ber of units [12], is employed as a classifier. Fig. 1. (b)
depicts the framework for a DNN-based context clustering
algorithm. The training procedure is similar to that described
in Section 2, in which the mapping function between the lin-
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Fig. 2. Spectrogram of synthesized speech from automati-
cally clustered input class and corresponding acoustic param-
eters (the additional bold and dashed line represent the soft-
max outputs of the first and the second unit, respectively): (a)
entire signal, (b) voice-like signal, (c) unvoice-like signal.

guistic and acoustic features is modeled by the central DNN
structure. However, one of the hidden layers is replaced with
the bottleneck layer (the third layer in Fig. 1. (b)), which
functions as a classifier during the test step.

The test procedure is also slightly different from that de-
scribed in Section 2. By setting the activation of the bottle-
neck unit as a soft-max function, the network estimates the
class type of the given context instead of the output acous-
tic features. Since the bottleneck layer has been trained to
represent the statistical characteristics of both linguistic and
acoustic features, it can efficiently predict the most probable
class for the given context.

Fig. 2 shows an example of output clusters when the bot-
tleneck layer has two units (two classes). It represents the
speech signal that is synthesized by each clustered input con-
text and corresponding acoustic parameters. Although the
classifier is trained by unsupervised learning procedure, the
results show that the clustering network automatically divides
input context into two classes, and each class well represents
different types of voicing characteristics.

3.2. Shared hidden layer-based multi-class learning

To model the mapping function between linguistic and acous-
tic features, a number of DNNs should be trained in each
class. However, the use of a large number of DNNs is not
only inefficient but is also prone to over-fitting to the compar-
atively small database. In this paper, we propose an efficient
MCL approach to train each class by using the SHL training
paradigm; the hidden layers are shared to model the universal
characteristics of all the classes, while the regression layers
are class-dependently trained. The training follows a multi-
task learning procedure, in which multiple related tasks are

trained simultaneously and benefit from each other [13].
Fig. 1 (c) depicts the framework for an SHL-based MCL

training process. In the training step, both input and out-
put features are first clustered into a fixed number of classes,
and then each class is modeled with the SHL training proce-
dure. Although there are some differences in the training pro-
cess due to architectural changes, it is still similar to the con-
ventional back-propagation (BP) algorithm [14]. Note that a
key of the SHL training procedure is that all the classes are
trained simultaneously [9, 10]. To successfully train the net-
work for all the classes using a mini-batch stochastic gradient
descent procedure, the sequence of input-output pairs needs
to be randomized across all the classes before they are in-
put to the training process. Then, the hidden layers and each
class-specific regression layer are updated through the BP al-
gorithm while other regression layers are kept intact. As a
result, both class-independent and class-dependent character-
istics are efficiently modeled by the shared hidden layers and
the regression layers, respectively.

In the test step, the DNN-based context clustering algo-
rithm first determines the class of input linguistic features,
and then the corresponding regression layer estimates the out-
put acoustic features. By setting the estimated output as a
mean vector and pre-computed class-dependent LVs of output
features, the continuous trajectories of speech parameters are
generated by the SPG algorithm. Finally, the speech synthe-
sis module synthesizes speech waveforms using the generated
parameters.

4. EXPERIMENTS

4.1. Experimental setup

Phonetically and prosodically balanced speech data recorded
by a Korean male speaker were used for the experiments. The
speech signals were sampled at 16 kHz, and each sample was
quantized by 16 bits. In total, 2,700 utterances (around 3.5
hours) were used for training, 100 utterances were used for
validation, and an additional 100 utterances not included in
the training and validation steps were used for evaluation.
A grapheme-to-phoneme (G2P) converter was developed ac-
cording to the rules for standard Korean pronunciation gram-
mar and the context information-labeling program.

In the analysis step, the frame length was set to 20 ms, and
the spectral and excitation parameters were extracted at every
5 ms based on an improved time-frequency trajectory excita-
tion (ITFTE) vocoder [15]. The 24-dimensional line spectral
frequencies (LSFs) were extracted for the spectral parameter,
whereas 18-dimensional slowly evolving waveform (SEW)
and 4-dimensional rapidly evolving waveform (REW) coeffi-
cients were extracted for the excitation parameters; Logarith-
mic fundamental frequency (log-F0) and energy were also ex-
tracted for training them with the DNNs. In the synthesis step,
all parameters were generated by the SPG algorithm. The ex-
citation signal was reconstructed by the generated SEW, REW
coefficients, and its pitch period. Finally, the single pitch-
based speech signal was synthesized from the generated exci-
tation signal and LSFs.
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Table 1. Objective test results for baseline DNN and pro-
posed MCL-DNN depending on the number of classes (for
the voiced components).

Number LSD F0 RMSE SEW REW
of classes (dB) (Hz) NRMSE NRMSE

DNN 1 3.449 16.022 0.217 0.258

8 3.343 15.710 0.214 0.251
MCL 16 3.337 15.429 0.214 0.257
-DNN 32 3.362 15.322 0.213 0.260

64 3.340 14.898 0.216 0.257

Fig. 3. Results of preference tests (%) comparing the pro-
posed and baseline systems.

In the baseline and the proposed MCL-DNN, the input
feature vector included 210-dimensional contextual infor-
mation, consisting of 203 binary and 7 numerical features.
The corresponding output feature vector contained 144-
dimensional acoustic features that consisted of the ITFTE
parameters with their temporal dynamics. The hidden layers
comprised 6 layers of 1024 units. Before training, input fea-
tures were normalized to yield zero-mean and unit-variance,
whereas the output features were normalized to give mini-
mum and maximum values of 0.01 and 0.99, respectively.
The sigmoid activation function was used for the hidden and
regression layers. For training, the weights were initialized
randomly and trained using the BP procedure, based on the
mini-batch stochastic gradient descent algorithm.

In the context clustering network, the DNN configuration
was the same as the baseline and the proposed MCL-DNN
system, except for those of the hidden layers: they had 6
layers, but the second layer was replaced with the bottleneck
layer. Note that the position of the bottleneck layer was deter-
mined empirically. Each hidden layer had 256 units, whereas
the number of units in the bottleneck layer varied (at 8, 16,
32, and 64). The hyperbolic tangent and soft-max activation
function were used for the hidden and bottleneck layer, re-
spectively.

4.2. Objective and subjective test results

In the objective test, we compared distortions in acoustic pa-
rameters obtained from the original speech with those esti-
mated by DNNs. The metrics for measuring distortion were
log-spectral distance (LSD) for LSFs in dB, root mean square
error (RMSE) for F0 in Hz, and normalized RMSE (NRMSE)
for SEW and REW. The test results for the baseline DNN
and the proposed MCL-DNN are shown in Table 1. From
the results, it is clear that all the parameters generated by the
proposed system showed smaller estimation errors than those

Table 2. Objective test results for the baseline DNN and pro-
posed MCL-DNN depending on the number of classes (for
unvoiced and transition components).

Number LSD SEW REW
of classes (dB) NRMSE NRMSE

DNN 1 3.257 0.340 0.336

8 3.142 0.336 0.114
MCL 16 3.114 0.337 0.114
-DNN 32 3.147 0.333 0.115

64 3.099 0.337 0.105

Fig. 4. Results of preference tests (%): proposed system using
local variance (LV) compared with the baseline system using
global variance (GV).

generated by the baseline system. Moreover, since the ac-
curacy of these parameters is closely related to the quality
of synthesized speech, the perceived quality of synthesized
speech from the proposed system is expected to be better than
that from the baseline system.

To evaluate the perceptual quality of the proposed system,
a preference listening test was performed. In the test, twelve
listeners were asked to make a decision. Twenty utterances
were randomly selected from the evaluation set, which were
then synthesized by the baseline and the proposed systems (64
clusters). The results of the preference test (Fig. 3) show that
the proposed system provided much higher perceptual quality
(p < 10−6) than the conventional system.

4.3. Analysis of over-smoothing effect of speech parame-
ters

To verify how the proposed system alleviated the over-
smoothing effect, the metrics used in Section 4.2 were also
measured for the transition and unvoiced segments. From the
results shown in Table 2, the estimation errors of the proposed
system were much smaller than those of the baseline system.
Since the SEW and REW represent time-varying voicing
characteristics of the excitation signal [6, 15], it can be im-
plied that the temporal variation of the excitation parameter
is well represented by the proposed system. The effect of
using LV was also evaluated via an additional listening test
in which the quality of synthesized speech from the proposed
system was compared as: the proposed MCL-DNN with and
without LVs obtained by each class. In the latter case, the GV
calculated from the entire training data was used for the SPG
algorithm. As shown in Fig. 4, the preference test confirms
that introducing local variances also improves the perceptual
quality (p < 10−2) of synthesized speech.
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5. CONCLUSION AND FUTURE WORK

A multi-class learning (MCL) algorithm for a deep neural
network (DNN)-based statistical parametric speech synthe-
sis (SPSS) system was proposed. To overcome the over-
smoothing effect of conventional SPSS systems, a DNN-
based context clustering algorithm was introduced. Training
data were first divided into several classes automatically, and
were then trained by a shared hidden layer (SHL)-based MCL
algorithm. The proposed system significantly reduced both
the over-smoothing and over-fitting problems. Objective and
subjective tests also confirmed the superiority of the proposed
system compared to the conventional approach.

In future work, we plan to further improve the quality
of the SPSS system by combining the proposed algorithm
with the long short-term memory recurrent neural network
(LSTM-RNN)-based training process, which is well known as
the state-of-the-art modeling method for SPSS systems. Var-
ious training algorithms will be also investigated to refine the
prediction procedure of DNN-based context clustering algo-
rithm.

6. REFERENCES

[1] Takayoshi Yoshimura, Keiichi Tokuda, Takashi Ma-
suko, Takao Kobayashi, and Tadashi Kitamura, “Si-
multaneous modeling of spectrum, pitch and dura-
tion in HMM-based speech synthesis,” in Proc. EU-
ROSPEECH, 1999.

[2] Heiga Zen, Keiichi Tokuda, and Alan W Black, “Statis-
tical parametric speech synthesis,” Speech Comm., vol.
51, no. 11, pp. 1039–1064, 2009.

[3] Heiga Zen, Andrew Senior, and Mike Schuster, “Statis-
tical parametric speech synthesis using deep neural net-
works,” in Proc. ICASSP, 2013.

[4] Yao Qian, Yuchen Fan, Wenping Hu, and Frank K
Soong, “On the training aspects of deep neural network
(DNN) for parametric TTS synthesis,” in Proc. ICASSP,
2014.

[5] Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku,
and Keiichi Tokuda, “The effect of neural networks
in statistical parametric speech synthesis,” in Proc.
ICASSP, 2015.

[6] Eunwoo Song and Hong-Goo Kang, “Deep neural
network-based statistical parametric speech synthesis
system using improved time-frequency trajectory exci-
tation model,” in Proc. INTERSPEECH, 2015.

[7] Keiichi Tokuda, Takashi Masuko, Tetsuya Yamada,
Takao Kobayashi, and Satoshi Imai, “An algorithm
for speech parameter generation from continuous mix-
ture HMMs with dynamic features,” in Proc. EU-
ROSPEECH, 1995.

[8] Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts,
and Simon King, “Deep neural networks employing
multi-task learning and stacked bottleneck features for
speech synthesis,” in Proc. ICASSP, 2015.

[9] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan
Gong, “Cross-language knowledge transfer using multi-
lingual deep neural network with shared hidden layers,”
in Proc. ICASSP, 2013.

[10] Yuchen Fan, Yao Qian, Frank K Soong, and Lei He,
“Multi-speaker modeling and speaker adaptation for
DNN-based TTS synthesis,” in Proc. ICASSP, 2015.

[11] Sadaoki Furui, “Speaker-independent isolated word
recognition using dynamic features of speech spec-
trum,” IEEE Trans. Acoust., Speech Signal Process.,
vol. 34, no. 1, pp. 52–59, 1986.

[12] Dong Yu and Michael L Seltzer, “Improved bottleneck
features using pretrained deep neural networks.,” in
Proc. INTERSPEECH, 2011.

[13] Rich Caruana, “Multitask learning,” Machine learning,
vol. 28, no. 1, pp. 41–75, 1997.

[14] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams, “Learning internal representations by error
propagation,” Tech. Rep., DTIC Document, 1985.

[15] Eunwoo Song, Young Sun Joo, and Hong Goo Kang,
“Improved time-frequency trajectory excitation model-
ing for a statistical parametric speech synthesis system,”
in Proc. ICASSP, 2015.

2016 24th European Signal Processing Conference (EUSIPCO)

1955


