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Abstract—In this paper, a new Markov random field-based
mixture model, where each of its components is a mixture of
Student’s-t and Rayleigh distributions, is proposed for clustering
fMRI time-series. By introducing the non-symmetric Rayleigh
distribution, the proposed algorithm has flexibility to fit various
types of observed time-series. Moreover, our method incorporates
Markov random field so that the spatial relationships between
neighboring voxels are considered, which makes the presented
model more robust to noise, and that preserves more details of the
clustering results compared with other symmetric distribution-
based algorithms. Additionally, the expectation maximization
algorithm is directly implemented to estimate the parameter set
by maximizing the data log-likelihood function. The proposed
framework is evaluated on real fMRI time-series, and the
quantitatively compared results are demonstrated in terms of
effectiveness and accuracy.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides
a non-invasive technique in both neuro-imaging and clinical
fields [1-2]. During the past decades, several approaches have
been proposed for detecting activation cortex with fMRI time-
series of the brain [3]. Generally, the fMRI time-series with
similar temporal behavior belong to the same class, in contrast,
dissimilar ones should belong to different classes. Clustering
technique is usually performed to partition unlabeled time-
series into various classes. Thus, seeking for a robust and
accurate clustering method is becoming the key to analyze
fMRI time-series.
Methods proposed for fMRI time-series analysis mainly in-
clude model-based and data driven approaches. In model-
based approaches, Gaussian mixture model (GMM) provides
a simple and effective way for time-series clustering [4].
Nevertheless, in consideration of its sensitivity to outliers,
recently, an advanced Student’s-t mixture mode (SMM) [5-
6] has been employed. Unlike GMM, SMM with longer tails
has the degrees of freedom which provides a more flexible
method than GMM. However, the main drawback of the two
mixture models is that they can’t take the spatial information
into account. Therefore, both GMM and SMM are extremely
sensitive to noise. To overcome this shortcoming, mixture
models based on Markov random field (MRF) have been
widely used recently, but this could be time expensive. In
addition, each component of these MRF-based mixture models
is a symmetric distribution [7-8]. In real fMRI time-series,
the intensity distribution of each class does not show exact

symmetric. This leads to undesirable clustering results while
a symmetric distribution is used. More recently, Browne et
al. [9] introduced a model-based learning method using a
mixture of Gaussian and uniform distributions. However, this
algorithm also adopts a symmetric probability distribution
function. Based on these considerations, this paper proposes
a novel MRF-based mixture model of mixtures of Student’s-t
and Rayleigh distribution (RSMM-MRF). The main advantage
of the proposed algorithm is that it has capability to model the
non-symmetric intensity distribution due to the introduction
of the non-symmetric Rayleigh distribution. In addition, the
proposed model utilizes MRF for each pixel to impose spatial
smoothness constraints. Furthermore, in our method, a new
smoothing prior is introduced in MRF distribution to reduce
the computational complexity. Finally, this study adopts the
expectation maximization (EM) algorithm for maximizing the
data log-likelihood function, and obtaining the estimations of
all parameters. Numerical simulations demonstrate that the
proposed method presents more accurate clustering results for
fMRI time-series than other related methods.
The rest of this paper is organized as follows. In section II,
we briefly describe the standard Student’s-t mixture model. In
section III, the details of our proposed method are presented,
followed by the process of parameter learning described in
section IV. Experiments conducted on the real fMRI time-
series are demonstrated in section V. Section VI gives the
conclusions.

II. STANDARD STUDENT’S-T MIXTURE MODEL

Let xi, i = (1, 2, ..., N), denote an observation at the
ith pixel of an image, and (Ω1,Ω2, ...,ΩK) denote different
classes. Student’s-t mixture model assumes that the density
function p(xi|Θ) at each pixel xi is given by

p(xi|Θ) =

K∑
j=1

πjf(xi|µj ,Σj , vj), (1)

where the prior probability πj satisfies the following constrains

0 ≤ πj ≤ 1 and

K∑
j=1

πj = 1, (2)
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and Θ = {πj , µj ,Σj , vj} is the parameter set of the Student’s-
t mixture model. Each Student’s-t distribution f(xi|µj ,Σj , vj)
in (1) is written in the following form

f(xi|µj ,Σj , vj) =
Γ(

vj+D
2 )|Σj |−

1
2

(πvj)
D
2 Γ(

vj
2 )[1 + v−1

j δ(xi, µj ; Σj)]
vj+D

2

,

(3)
where D is the dimensionality of the observation xi, and
µj ,Σj ,vj are mean, covariance, and the degrees of freedom,
respectively. δ(xi, µj ; Σj) is a simple expression for (xi −
µj)

TΣ−1
j (xi−µj). The log-likelihood function of the density

function (1) can be derived as

L(Θ) = log

{
N∏
i=1

p(xi|Θ)

}

=
N∑
i=1

log


K∑
j=1

πjf (xi|µj ,Σj , vj)

.

(4)

III. PROPOSED METHOD

Let Y = {y1, y2, ..., yN} be a set of N fMRI time-series,
where the T -dimensional observation yi represents a sequence
of T values measured over time, i.e., yi = {yit, t = 1, ..., T}.
To model fMRI time-series, we use the linear regression model
to assume yi having the following form

yi = Xβi + ei, (5)

where βi is the P -dimensional unknown vector of linear
regression coefficients, and the last term ei denotes unknown
stochastic noise. This paper chooses the first P -order DCT
orthogonal polynomials with length T as the design matrix
X = {xtk, t = 1, ..., T, k = 1, ..., P}, which is denoted by

xtk = cos

(
π(k − 1)

2t− 1

2T

)
. (6)

In this study, we consider partitioning the fMRI time-series Y
into K classes. The observations belonging to the same class
satisfy the same conditional probability distribution. Thus,
each class has its own parameter set θj , and the proposed
finite mixture model can be written as

p (yi|Π,Θ) =
K∑
j=1

πijf (yi|θj), (7)

where Π = {πij , i = 1, ..., N, j = 1, ...,K} is the set of prior
probability, and Θ = [θ1, θ2, ..., θK ] is the parameter set of
the mixture model. The proposed component density function
f(yi|θj) in (7) applies a mixture of Student’s-t and Rayleigh
distributions, which has the following form

f (yi|θj) = wjϕ (yi|βj ,Σj , vj) + (1− wj)R (yi|λj) , (8)

where wj ∈ [0, 1] is a weight factor, and ϕ(yi|βj ,Σj , vj) is
the density function of T -dimensional multivariate Student’s-t
distribution with the following form

ϕ(yi|βj ,Σj , vj) =
Γ(

vj+T
2 )|Σj |−

1
2

(πvj)
T
2 Γ(

vj

2 )[1 + vj−1δ(yi, βj ; Σj)]
vj+T

2

,

(9)

where Σj is diagonal covariance matrix and δ(yi, βj ; Σj) is
defined by (yi −Xβj)

TΣ−1
j (yi −Xβj). According to [10], a

multivariate Rayleigh distribution R(yi|λj) is defined as

R (yi|λj) =
||yi||
λj

exp

(
−yi

T yi
2λj

)
, (10)

where λj ∈ (0,∞) is the scale parameter and || · || denotes
L1 norm.
In order to take the spatial information into account, MRF is
introduced to the proposed algorithm. Based on Bayes’ rules,
the posterior probability density function of our method can
be expressed as

p (Π,Θ|Y ) ∝ p (Y |Π,Θ) p (Π) . (11)

Combing (7) and (8), the joint density function of the time-
series Y in (11) can be written as

p (Y |Π,Θ) =
N∏
i=1

p (yi|Π,Θ)

=
N∏
i=1

K∑
j=1

πij [wjϕ (yi|βj ,Σj , vj) + (1− wj)R (yi|λj)].

(12)
Here, the Markov random field based on the Gibbs distribution
is denoted by

p (Π) = Z−1 exp

{
− 1

T̄
U (Π)

}
, (13)

where Z and T̄ are normalizing constants. To simplify the
proposed model and make it computationally efficient, a new
smoothing prior U(Π) is applied in current study as follows:

U (Π) = −
N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij , (14)

where t indicates the iteration step and the function G
(t)
ij in

(14) is defined as

G
(t)
ij = exp

 α

2Ni

∑
m∈N̄i

(
z
(t)
mj + π

(t)
mj

) , (15)

where z
(t)
mj and π

(t)
mj respectively denote the posterior and prior

probability. α is a smoothness controlling parameter (α = 12).
Ni is the number of time-series in the neighborhood N̄i of the
observation yi. Hence, the MRF distribution p(Π) in (13) can
be rewritten as

p (Π) = Z−1 exp

 1

T̄

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij

 . (16)
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Considering (12) and (16), the log-likelihood function of (11)
can be denoted by

L(Π,Θ|Y ) = log{p(Π,Θ|Y )}

=

N∑
i=1

log{
K∑
j=1

π
(t+1)
ij [w

(t+1)
j ϕ(yi|β(t+1)

j ,Σ
(t+1)
j , v

(t+1)
j )

+ (1− w
(t+1)
j )R(yi|λ(t+1)

j )]} − logZ

+
1

T̄

N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij .

(17)

IV. PARAMETER LEARNING

The objective of this section is to optimize the parameter
set. Note that, we can not directly apply the EM algorithm for
maximizing the log-likelihood function (17). To overcome this
problem, Jensen’s inequality is introduced so that two hidden
variables zij and ηij are computed in E-Step. Given the values
of normalizing constants Z=1 and T̄=1, the objective function
can be obtained by

J (Π,Θ|Y ) =
N∑
i=1

K∑
j=1

z
(t)
ij {log π(t+1)

ij

+ η
(t)
ij logw

(t+1)
j + η

(t)
ij log ϕ(yi|β(t+1)

j ,Σ
(t+1)
j , v

(t+1)
j )

+ (1− η
(t)
ij ) log(1− w

(t+1)
j ) + (1− η

(t)
ij ) logR(yi|λ(t+1)

j )}

+
N∑
i=1

K∑
j=1

G
(t)
ij log π

(t+1)
ij ,

(18)
where the posterior probability zij can be computed as follows

z
(t)
ij =

π
(t)
ij f

(
yi|θ(t)j

)
K∑

m=1
π
(t)
imf

(
yi|θ(t)m

) , (19)

and another parameter ηij is formulated as

η
(t)
ij =

w
(t)
j ϕ

(
yi|β(t)

j ,Σ
(t)
j , v

(t)
j

)
w

(t)
j ϕ

(
yi|β(t)

j ,Σ
(t)
j , v

(t)
j

)
+
(
1− w

(t)
j

)
R
(
yi|λ(t)

j

) .
(20)

To estimate the prior probability, we calculate the partial
derivative of the objective function with respect to πij

∂

∂π
(t+1)
ij

J −
N∑
i=1

γi

 K∑
j=1

π
(t+1)
ij − 1

 = 0, (21)

where γi is Lagrange’s multiplier. Since πij satisfies the

constraints 0 ≤ πij ≤ 1 and
K∑
j=1

πij = 1, the prior probability

is calculated by

π
(t+1)
ij =

z
(t)
ij +G

(t)
ij

K∑
m=1

(z
(t)
im +G

(t)
im)

. (22)

Similarly, taking the derivative of objective function ∂J/∂wj

as zero, we have

w
(t+1)
j =

N∑
i=1

z
(t)
ij η

(t)
ij

N∑
i=1

z
(t)
ij

. (23)

Setting the partial derivative of the objective functions with
respect to βj to zero, yields

β
(t+1)
j =

[
N∑
i=1

z
(t)
ij η

(t)
ij u

(t)
ij X

TΣ
−1(t)
j X

]−1

×XTΣ
−1(t)
j

N∑
i=1

z
(t)
ij η

(t)
ij u

(t)
ij yi,

(24)

where u
(t)
ij is defined as

u
(t)
ij =

v
(t)
j + T

v
(t)
j + (yi −Xβ

(t)
j )

T
Σ

−1(t)
j (yi −Xβ

(t)
j )

. (25)

To obtain the estimation of variance Σj , we compute the
∂J/∂Σj = 0, and obtain the following expression

Σ
(t+1)
jl =

N∑
i=1

z
(t)
ij η

(t)
ij u

(t)
ij

(
yil −

[
Xβ

(t+1)
j

]
l

)2
N∑
i=1

z
(t)
ij η

(t)
ij

. (26)

Note that l = 1, 2, ..., T denotes the lth diagonal element. The
value of vj can be calculated as a solution to the following
equation
N∑
i=1

z
(t)
ij η

(t)
ij

(
log u

(t)
ij − u

(t)
ij

)
N∑
i=1

z
(t)
ij η

(t)
ij

+ log

(
v
(t+1)
j

2

)
− φ

(
v
(t+1)
j

2

)

+ φ

(
v
(t)
j + T

2

)
− log

(
v
(t)
j + T

2

)
+ 1 = 0,

(27)
where φ (x) = ∂ (ln Γ (x)) /∂x is the digamma function. With
respect to the scaled parameter λj of Rayleigh distribution,
the necessary condition for making its partial derivative of the
objective function zero becomes

λ
(t+1)
j =

N∑
i=1

z
(t)
ij

(
1− η

(t)
ij

)
yTi yi

2
N∑
i=1

z
(t)
ij

(
1− η

(t)
ij

) . (28)

Thus, the discussion on estimating parameter set can be
summarized as follows.
Step 1. Initialize the prior probability πij , the weighting factor
wj , the regression coefficients βj , the covariance matrix Σj ,
the degrees of freedom vj , and the scaled parameter λj . Let
α=12.
Step 2. Compute the posterior probability zij , the parameter
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ηij , the new function Gij , and the variable uij with (19), (20),
(15), and (25), respectively.
Step 3. Update the prior probability πij , the weighting factor
wj , the regression coefficients βj , the covariance matrix Σj ,
the degrees of freedom vj , and the scaled parameter λj using
(22), (23), (24), (26), (27) and (28) respectively.
Step 4. Terminate the iterations if the objective function
converges. Otherwise, t = t+ 1 and return to Step 2.

V. EXPERIMENTAL RESULTS

In this section, the algorithms are verified on two real fMRI
time-series, including auditory and attention data. Since no
ground truth is available, the clustering results are visually
compared with different algorithms. In this experiment, real
fMRI datasets obtained by the SPM12 package [11] are
preprocessed by the following standard steps, i.e., realignment,
segmentation, normalization, spatial smoothing, and scaling
with the mean value of the data. All these details are described
in the SPM manual.

Fig. 1. Clustering results (K=5) using auditory data (First Row) and attention
data (Second Row) with Gaussian Noise (Mean = 0, Variance = 0.01). From
left to right are GMM, GMM-MRF, SMM, SMM-MRF, and RSMM-MRF
methods.

The experiment first evaluates the proposed scheme using
the real auditory and attention datasets. The former is collected
from a healthy volunteer which consists of 96 acquisitions with
7s duration. After pre-processing, the functional images used
in the current experiment are composed of 79 slices (79×59×
79 voxels). Here, we select slice 29 for this experiment. The
latter with resolution 53×63×46 is obtained from echo-planar
imaging on a 2 Tesla Magnetom Vision MRI system. Slice 18
is used to compare the effection of RSMM-MRF. In addition,
we have applied GMM, GMM-MRF [7], SMM and SMM-
MRF [8] to analyze these datasets. Fig.1 shows the clustering
results of activation areas. As shown in the final clustering
results, with respect to the methods with MRF, one can found
that the effect of noise tends to disappear as well as small
islands of activation area. Furthermore, the proposed RSMM-
MRF prevents the clustering regions from losing details under
noisy conditions, and obtains more attractive results.
In order to quantitatively assess the clustering results, the intra-

label error is adopted in this experiment. The intra-label error
is defined by

εl =
1

N

K∑
j=1

Nj∑
i=1

||yi −Xβj ||2, (29)

where Nj denotes the number of time-series in class Ωj .
The lower εl is, the more accurate clustering result the
algorithm has. The intra-label errors of various models are
then calculated under different noisy cases. The experiment
compares several methods with the proposed model on the
real fMRI time-series listed in Tables I and II. As can be seen,
the proposed method can recognize the details from the noise
using the mixtures of Student’s-t and Rayleigh distributions.
Another interesting discovery of this experiment is that, the
clustering results of GMM-MRF and SMM-MRF with the
attention dataset perform poorer than GMM and SMM. It
is may because that the small islands of activation area in
attention dataset are regarded as noise and smoothed by MRF.

TABLE I
INTRA-LABEL ERROR OF DIFFERENT METHODS ON AN AUDITORY

PROCESSING TASK

Gaussian Noise GMM GMM- SMM SMM- RSMM-
Mean Variance MRF MRF MRF

0 0.005 0.5216 0.5213 0.4756 0.4764 0.4676
0 0.008 0.5338 0.5327 0.4936 0.4931 0.4852
0 0.01 0.5397 0.5397 0.5029 0.5028 0.4931
0 0.02 0.5836 0.5798 0.5571 0.5517 0.5418

0.01 0.005 0.6338 0.6326 0.5792 0.5773 0.5701
0.01 0.008 0.6442 0.6401 0.6024 0.5971 0.5891
0.01 0.01 0.6502 0.6540 0.6094 0.6087 0.6022
0.01 0.02 0.6958 0.6933 0.6704 0.6681 0.6643

TABLE II
INTRA-LABEL ERROR OF DIFFERENT METHODS ON AN ATTENTION

PROCESSING TASK

Gaussian Noise GMM GMM- SMM SMM- RSMM-
Mean Variance MRF MRF MRF

0 0.005 0.1878 0.1865 0.1868 0.1860 0.1856
0 0.008 0.1928 0.1920 0.1890 0.1894 0.1879
0 0.01 0.1973 0.1979 0.1933 0.1934 0.1924
0 0.02 0.2258 0.2266 0.2164 0.2193 0.2154

0.01 0.005 0.2136 0.2138 0.2067 0.2075 0.2058
0.01 0.008 0.2204 0.2212 0.2136 0.2135 0.2122
0.01 0.01 0.2243 0.2249 0.2167 0.2198 0.2172
0.01 0.02 0.2564 0.2578 0.2461 0.2467 0.2459

In statistics, paired t-test [12-13] is applied to further evaluate
the significant difference between the proposed method and
the others. In this hypothesis testing method, an original hy-
pothesis that the two algorithms have no significant difference
is pre-established firstly and then tested by a statistic satisfying
the student’s-t distribution. The statistic can be computed by
the data analysis tool. In our experiment, 10 trials with noisy
fMRI datasets via various methods are performed to obtain
their intra-label errors. The results of paired t-test based on the
intra-label errors are shown in Table III. As shown in this table,
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TABLE III
FMRI DATASET-CLUSTERING ACCURACY FOR THE 10 TRIALS WITH

NOISY AUDITORY AND ATTENTION DATASETS IN TERMS OF INTRA-LABEL
ERROR (MEAN ± STANDARD). BOLD = LOWEST VALUE,

Clustering Methods Auditory Attention

GMM 0.60034± 0.24585∗∗ 0.21480± 0.14456∗∗

GMM-MRF 0.59919± 0.24548∗∗ 0.21509± 0.14702∗∗

SMM 0.56133± 0.25066∗∗ 0.20858± 0.13497∗

SMM-MRF 0.55940± 0.24856∗∗ 0.20945± 0.13704∗∗

RSMM-MRF 0.55168± 0.25147 0.20780± 0.13613

∗= Values significantly different from RSMM-MRF (paired t-test with
0.05 significance level);
∗∗= Values significantly different from RSMM-MRF (paired t-test with
0.01 significance level).

the results indicate that the proposed method is significantly
different from the classic methods. Therefore, the proposed
improving of the clustering method is notable.

VI. CONCLUSIONS

In this paper, a novel mixture model using mixtures of
Student’s-t and Rayleigh distributions for clustering fMRI
time-series has been proposed. By taking the spatial relation-
ships into account, the proposed method demonstrates better
robustness against noise. The EM algorithm is employed to
achieve parameters learning. The clustering results of real
fMRI datasets including auditory and attention data confirm
robustness and accuracy of the proposed model and its signif-
icant difference with the classic methods.
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