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Abstract—Covariance sketching has been recently introduced
as an effective strategy to reduce the data dimensionality without
sacrificing the ability to reconstruct second-order statistics of
the data. In this paper, we propose a novel covariance sketching
scheme with reduced complexity for spatial-temporal data, whose
covariance matrices satisfy the Kronecker product expansion
model recently introduced by Tsiligkaridis and Hero. Our scheme
is based on quadratic sampling that only requires magnitude
measurements, hence is appealing for applications when phase
information is difficult to obtain, such as wideband spectrum
sensing and optical imaging. We propose to estimate the covari-
ance matrix based on convex relaxation when the separation
rank is small, and when the temporal covariance is additionally
Toeplitz structured. Numerical examples are provided to demon-
strate the effectiveness of the proposed scheme.

Index Terms—spatial-temporal data modeling, covariance
sketching, kronecker product, convex optimization

I. INTRODUCTION

Effective statistical inference of high-dimensional data sets
plays a critical role in modern scientific and knowledge discov-
ery. However, the volume and velocity of the data generated
often overwhelms the storage, bandwidth and computational
capabilities of the sensing platforms, making it challenging to
perform inference within the prescribed sensing budget.

Recently, covariance sketching has been proposed [1]–[7] as
an effective strategy to reduce the data dimensionality without
sacrificing the ability to recover covariance information. This
is motivated by the observation that, the covariance matrix of-
ten leads to a sufficient statistic to perform the inference task of
interest, e.g. signal detection and parameter estimation. These
schemes often first apply a reduced-dimension linear operator
to each of the temporal data vectors, also known as sketching,
and then estimate the covariance matrix using the sketches
that can be stored in much smaller dimension than that of the
covariance matrix, whose complexity does not scale with the
increase of the number of data snapshots. The effectiveness of
covariance sketching lies upon the availability of parsimonious
representations of the covariance matrices, such that they can
be recovered from a much smaller number of measurements
than the ambient dimension. Example structures that have
been exploited include positive semidefiniteness, sparsity, low-
rankness, and Toeplitz. Notably, no parsimonious assumptions
such as sparsity are necessary for the data sets themselves.
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High-dimensional spatial-temporal data is ubiquitous and
can be used to model climate data, gene expression data, net-
work traffic, wideband power spectrum [8], and so on. Due to
the spatial-temporal correlations, it is beneficial to consider the
covariance matrices of spatial-temporal data blocks, which can
be modeled as a Kronecker product of two smaller positive-
semidefinite (PSD) matrices [9], [10] – one corresponding to
the spatial correlations, and the other corresponding to the
temporal correlations. This greatly reduces the number of
parameters to describe the covariance matrix. Recently, this
model is extended to a Kronecker product expansion model by
Tsiligkaridis and Hero [11], [12], where the covariance matrix
is a sum of Kronecker products of smaller PSD matrices, to
better account for the variability of the data sets. The number
of distinct Kronecker products in the expansion is known as
the separation rank of the covariance matrix, which typically
is very small.

In this paper, we propose novel covariance sketching
schemes for high-dimensional spatial-temporal data whose
covariance matrices satisfy the Kronecker product expansion
model with a small separation rank. The existence of Kro-
necker product structures in the covariance allows for a more
efficient design of the sketching schemes. One prominent
benefit is to apply sketching simultaneously to the spatial
dimension and the temporal dimension, i.e. on a spatial-
temporal data block, with a bilinear rank-one operator, to
reduce its computational cost. Specifically, for a p × q data
block, the sketching cost is reduced from O(pq) to O(p+ q).
We only record the magnitudes of the sketches, which are
nonnegative, and can be interpreted as energy projections
of the data onto certain one-dimensional linear subspaces,
which are easy to obtain using an energy detector in high-
frequency applications. After aggregations, the sketches can
be written as linear measurements of the covariance matrix
with respect to Kronecker-structured rank-one measurement
ensembles. One then wishes to recover the covariance matrix
from a small number of sketches by exploiting the fact that
it has a small separation rank. Recall that the covariance
matrix satisfies the Kronecker product expansion model, using
properties of the Kronecker product, we propose a convex
optimization algorithm based on nuclear norm minimization
as a surrogate for minimizing the separation rank [11]. In
particular, we further tailor the reconstruction algorithm to the
case when the temporal covariance is a Toeplitz PSD matrix
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[13] that accounts for stationarity. Finally, we demonstrate
the effectiveness of the proposed sketching schemes with
numerical simulations.

Our work is closely related to the covariance sketching
scheme proposed by Chen et al. [1], but is tailored to the
Kronecker structures of the covariance matrices to further
reduce the sketching complexity. The utility of Kronecker
products has also been studied in the compressive sensing
literature [14], by assuming the sparsifying basis admits a Kro-
necker product representation. Another line of work considers
covariance sketching using quantized measurements [15]–[18].

The rest of this paper is organized as follows. Section II
introduces the spatial-temporal data and the covariance models
with Kronecker products. Section III describes the proposed
covariance sketching schemes and the corresponding recon-
struction algorithms. Section IV provides numerical examples.
Finally, we provide some additional discussions in Section V
and conclude in Section VI.

II. SPATIAL-TEMPORAL DATA MODEL

We first describe the spatial-temporal data model, and then
introduce the Kronecker product expansion model for its
covariance structure that reduces the number of parameters.

A. Spatial-temporal data model

Consider a vector-valued random process {x[t]}∞t=0, where
the entries of x[t] ∈ Rp correspond to different spatial
coordinates. Start by concatenating q consecutive temporal
samples of x[t] together and denote

u[t] =
[
x[tq]T ,x[tq + 1]T , · · · ,x[tq + q − 1]T

]T ∈ Rpq.

On the other hand, reshaping u[t] into a p× q matrix gives a
spatial-temporal data block

U [t] =
[
x[tq],x[tq + 1], · · · ,x[tq + q − 1]

]
∈ Rp×q, (1)

where the columns correspond to the temporal dimension, and
the rows correspond to spatial dimension. We have u[t] =
vec(U [t]), where vec(·) denotes the vectorization operator.
For spatial-temporal data, we’re interested in the covariance
matrix of {u[t]}∞t=0, which captures both spatial and temporal
correlations. Define the covariance matrix of {u[t]} as

Ru = E
{
u[t]u[t]T

}
∈ Rpq×pq. (2)

Note that the parameter q shall be picked wisely to make
sense of the data. For example, if x[t] is a cyclostationary
random process, picking q as the period of x[t] will make the
new process u[t] wide-sense stationary [19].

B. Kronecker Product (Expansion) Model

To describe Ru, we need Θ(p2q2) parameters which may
be too large for high-dimensional data. Therefore, we consider
models of Ru that reduces its degree of freedom. The first is
a Kronecker product model [20], where we have

Ru = D ⊗E, (3)

where ⊗ denotes the Kronecker product, D ∈ Rq×q and
E ∈ Rp×p are PSD matrices that correspond to the temporal
and spatial correlations, respectively. This structure arises, and
finds applications in many signal processing problems. The
number of parameters to describe Ru is now Θ(p2 + q2),
which is much smaller than Θ(p2q2).

An important extension of the Kronecker product model
is recently proposed in [11], [12] with improved modeling
powers. Specifically, Ru is said to satisfy the Kronecker
product expansion model if it can be written as a sum of
Kronecker products:

Ru =
r∑

i=1

Di ⊗Ei, (4)

where r is called the separation rank [11] which is typically a
small number, Di ∈ Rq×q and Ei ∈ Rp×p are PSD matrices
corresponding to the spatial and temporal correlation in the
ith factor, 1 ≤ i ≤ r. The number of parameters is now given
as Θ(r(p2 + q2)). When r = 1, this model reduces to the
Kronecker product model discussed above.

Define the permutation rearrangement operator P(·) :
Rpq×pq 7→ Rp2×q2 :

[P(Φ)]pi1+i2,qj1+j2
= [Φ]pj1+i1,pj2+i2 , (5)

where the subscripts denote the coordinate of the entries, for
0 ≤ i1, i2 ≤ p− 1, 0 ≤ j1, j2 ≤ q− 1. Using the definition of
the Kronecker product, one can see that

P(Ru) =
r∑

i=1

vec(Ei) vec(Di)
T . (6)

Therefore, if Ru has a small separation rank, it can be
transformed linearly through permutation and reshaping into
a matrix with low rank in the usual sense.

Additionally, the factors may possess structures that are
worth exploring and further reduce the degrees of freedom.
Of particular interest is to incorporate the temporal stationarity
[13], where we consider Di’s are Toeplitz matrices. We refer
to this as Kronecker product expansion model with Toeplitz
enhancement. Then, the number of parameters to describe Ru

is further reduced to Θ(r(p2 + q)).

C. Motivating example

To demonstrate the applicability of the above models, con-
sider the space-time data block in (1) as generated from the
following factor model:

U [t] =
r∑

i=1

hi[t]si[t]
H , (7)

where each factor hi[t], si[t] are zero-mean and statistically
uncorrelated. Then we have u[t] =

∑r
i=1 si[t]⊗hi[t], and the
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covariance matrix Ru can be written as

Ru = E


(

r∑
i=1

si[t]⊗ hi[t]

)(
r∑

i=1

si[t]⊗ hi[t]

)T


=
r∑

i=1

E
{

(si[t]si[t]
T )⊗ (hi[t]hi[t]

T )
}

=
r∑

i=1

E
{
si[t]si[t]

T
}
⊗ E

{
hi[t]hi[t]

T
}

=
r∑

i=1

Di ⊗Ei,

where Di = E
{
si[t]si[t]

T
}

and Ei = E
{
hi[t]hi[t]

T
}

.
The second equality follows from the statistical uncorrelation
between different factors, and the third equality follows from
the statistical uncorrelation between si[t] and hi[t].

III. KRONECKER COVARIANCE SKETCHING

We first propose a covariance sketching scheme for the
Kronecker product expansion model, where the sketching
vectors are applied simultaneously on the spatial and temporal
dimensions to reduce computational costs. We then propose
covariance recovery algorithms based on convex relaxation
when the separation rank is small.

A. Kronecker covariance sketching
For high-dimensional spatial-temporal data, it may not

be possible to acquire the full data due to sensing budget
limitations in either time, storage or power. In what follows,
we describe a one-pass sampling strategy that only takes a
single nonnegative energy sketch for each spatial-temporal
block U [t] (i.e. u[t]). It is straightforward to extend the scheme
when multiple sketches per U [t] can be acquired.

Define a set of d sketching vectors {ai ∈ Rp, bi ∈ Rq}di=1

composed of i.i.d. standard Gaussian/Bernoulli entries. The
sketching scheme is similar to that in [1], and constitutes of
two steps. Given Tq samples of {x[t]}Tq−1

t=0 , or equivalently
T samples of {u[t]}T−1t=0 , we perform the following at each
t = 0, . . . , T − 1:

1) Sketching: for each U [t], we first select a pair of sketch-
ing vectors {a`t , b`t}, `t ∈ {1, . . . , d}, in the cyclic
order1, take a quadratic sketch that measures only the
magnitude of the inner product of U [t] with a bilinear
rank-one matrix a`tb

T
`t :

ỹt =
∣∣aT

`tU [t]b`t
∣∣2 =

∣∣(b`t ⊗ a`t)
Tu[t]

∣∣2
:=
∣∣zT

`tu[t]
∣∣2 , (8)

where zi = bi ⊗ ai, i = 1, . . . , d.
2) Aggregation: obtain the average of the sketches for each

pair of sketching vectors, i.e.

ȳi,T =

∑T−1
t=0 ỹt1{`t=i}∑T−1
t=0 1{`t=i}

,

1the exact selection ordering is not critical as long as each pair of sketching
vectors sees enough data samples for reliable aggregation.

where 1{·} is the indicator function. The aggregation can
be performed in an online fashion.

As T approaches infinity, the aggregates converge to the
expectation of quadratic sketches, i.e.

yi = E
[∣∣zT

i u[t]
∣∣2] = zT

i E
{
u[t]u[t]T

}
zi

= zT
i Ruzi := 〈Ru,Zi〉, i = 1, . . . , d. (9)

where Zi = ziz
T
i is again rank-one. Denote y = {yi}di=1, we

can represent (9) in a vector form as

y = Q(Ru), (10)

where Q(·) : Ru 7→ {〈Ru,Zi〉}di=1. Importantly, the aggre-
gated sketches y produces a set of linear measurements of the
covariance matrix Ru, even when the sketches are quadratic
with respect to the data u[t]. When T is finite, we can regard
y as noisy linear measurements of Ru, by adding a noise term
into (9). In this paper, we only consider the noise-free case,
and leave the study for finite T as future work.

Compared with the sketching scheme in [1], the new scheme
applies sketching onto spatial-temporal data blocks using a
bilinear rank-one matrix as in (8), while the sketching operator
in [1] is unstructured. This allows one to reduce the sketch-
ing cost to O(p + q), compared with using an unstructured
sketching vector, which is O(pq).

B. Kronecker covariance estimation

Given the linear model in (10), one may attempt to recover
the covariance matrix Ru via least-squares estimation, as long
as d is large enough, e.g. d ≥ p2q2/2. However, as we
will show, by leveraging the small separation rank of Ru

in the Kronecker product expansion model, we can use a
much smaller number of measurements to recover Ru than
its ambient dimension based on convex relaxations. Note that
we can rewrite yi as a linear measurement of the rank-r matrix
P(Ru) in (6),

yi = 〈P(Ru),P(Zi)〉,

where

P(Zi) = P(ziz
T
i ) = P((bi ⊗ ai)(bi ⊗ ai)

T )

= P((bib
T
i )⊗ (aia

T
i ))

= (bi ⊗ bi)(ai ⊗ ai)
T (11)

is also a rank-one matrix. Hence, we propose to seek the matrix
with the minimum rank that satisfies the observation:

min
W

rank(W ) s.t. yi = 〈P(Zi),W 〉, i = 1, . . . , d,

P−1(W ) � 0,

where P−1 denotes the inverse permutation of P defined in
(5) which is a linear operation.

Since minimizing the rank constraint is NP-hard, we look
to the nuclear norm relaxation of the rank constraint [21],
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(a) Gaussian sketching vectors (b) Bernoulli sketching vectors
Fig. 1. Phase transition of covariance estimation under the Kronecker product expansion model. The success rate is plotted with respect to the number of
measurements and the separation rank when p = q = 6, where the sketching vectors are generated with i.i.d. (a) Gaussian entries; (b) Bernoulli entries.

yielding the following algorithm:

min
W∈Rp2×q2

‖W ‖∗ s.t. yi = 〈P(Zi),W 〉, i = 1, . . . , d,

P−1(W ) � 0, (12)

where ‖ · ‖∗ denotes the nuclear norm. In Section IV, our
numerical simulations suggest that indeed the above algorithm
allows exact recovery of the covariance matrix even when d�
p2q2 when the separation rank r is small.

As a useful extension, we further consider the case when the
temporal covariance Di = T (ti)’s are Toeplitz matrices, and
Ei’s are unconstrained, where T (ti) denotes the symmetric
Toeplitz matrix with ti as the first column. Further define the
matrix T ∈ Rq2×q which corresponds to the linear mapping
vec(T (t)) = T t. In this case, we have that

P(Ru) =
r∑

i=1

vec(Ei) vec(Di)
T

=
r∑

i=1

vec(Ei) vec(T (ti))
T

=
r∑

i=1

vec(Ei)t
T
i T

T := V T T .

where V =
∑r

i=1 vec(Ei)t
T
i ∈ Rp2×q is a rank-r matrix.

We then wish to recover V using the following nuclear norm
relaxation algorithm:

min
V ∈Rp2×q2

‖V ‖∗ s.t. yi = 〈P(Zi),V T T 〉, i = 1, . . . , d,

P−1(V T T ) � 0. (13)

Again, we will demonstrate the effectiveness of the proposed
approach in the numerical simulations in Section IV.

IV. NUMERICAL EXAMPLES

Let p = q = 6. We generate a synthetic covariance
matrix satisfying the Kronecker product expansion model
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Fig. 2. Success rate of covariance estimation under the Kronecker product
expansion model where the temporal covariance is a Toeplitz matrix. The
success rate is plotted with respect to the number of measurements for
separation rank r = 1, 2, 3, where the sketching vectors are generated with
i.i.d. standard Gaussian entries.

by randomly generating PSD matrices Ei ∈ Rp×p and
Di ∈ Rq×q , i = 1, · · · , r. We also randomly generate the
measurement vectors with standard Gaussian or Bernoulli
entries. For each (r, d) pair, we apply the sketching scheme
and calculate the normalized mean squared error (NMSE) for
reconstruction as ‖R̂u − Ru‖2F/‖Ru‖2F, where R̂u is the
reconstructed covariance matrix from (12). For each Monte
Carlo simulation, the reconstruction is claimed successful if
the NMSE is below 10−5. Fig. 1 shows the success rate
of covariance reconstruction with respect to the number of
measurements d and the separation rank r over 10 Monte
Carlo experiments for each (r, d) pair, when the sketching
vectors are generated i.i.d. using (a) standard Gaussian entries
N (0, 1), and (b) Bernoulli entries with probability 1/2. It can
be seen that successful recovery is possible even when d is
much smaller than the ambient dimension of Ru, especially
when the separation rank is small.
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Fig. 2 plots the success rate of covariance estimation when
Di’s are additionally Toeplitz with respect to the number
of measurements for separation rank r = 1, 2, 3, where the
sketching vectors are generated with i.i.d. standard Gaussian
entries, for p = q = 6. It can be seen that the additional
Toeplitz structure further helps reducing the number of re-
quired measurements to achieve exact recovery.

V. DISCUSSIONS

Here, we briefly discuss the possibility of using bilinear
compressive measurements of each spatial-temporal data block
U [t] for covariance sketching, i.e.

Y [t] = AU [t]BT ,

where A ∈ Rm1×p and B ∈ Rm2×q , where m1 < p and
m2 < q since we’re interested in compression. This can be
regarded as an extension of the sketching scheme in [3]–[5]
to spatial-temporal data. Then vec(Y [t]) = (B ⊗A)u[t] and

RY = E{vec(Y [t]) vec(Y [t])T }
= (B ⊗A)Ru(B ⊗A)T

=
r∑

i=1

(B ⊗A)(Di ⊗Ei)(B ⊗A)T

=
r∑

i=1

(BDiB
T )⊗ (AEiA

T ) ∈ Rm1m2×m1m2 .

From the covariance matrix of the compressed data RY ,
we wish to recover the covariance matrix of the uncom-
pressed data Ru. Applying a permutation operator P̃(·) :
Rm1m2×m1m2 7→ Rm2

1×m
2
2 similar to (5) to the above equa-

tion, we have

P̃(RY ) =
r∑

i=1

vec(AEiA
T ) vec(BDiB

T )T

=
r∑

i=1

[(A⊗A) vec(Ei)][(B ⊗B) vec(Di)]
T

= (A⊗A)P(Ru)(B ⊗B)T .

Due to the non-empty null space of A and B, it is not
possible to uniquely identify P(Ru), hence Ru from P̃(RY ).
However, we may still be able to identify Ru for Kronecker
product expansion models with enhancements, particularly
when Di’s and E′is have additional Toeplitz or sparsity
constraints.

VI. CONCLUSION

In this paper, we have proposed a novel covariance sketch-
ing scheme for high-dimensional spatial-temporal data, whose
covariance matrices exhibit structures involving Kronecker
products that can be harnessed to further reduce the sketching
complexity. Efficient algorithms for covariance estimation are
also proposed based on convex relaxations using properties
of the Kronecker product. Numerical examples are provided
to demonstrate the effectiveness of the proposed schemes. In
future works, we plan to study the theoretical guarantees of the

proposed algorithms, and applications of the proposed schemes
for spectrum sensing for cognitive radios, data compression,
and more.

REFERENCES

[1] Y. Chen, Y. Chi, and A. Goldsmith, “Exact and stable covariance esti-
mation from quadratic sampling via convex programming,” Information
Theory, IEEE Transactions on, vol. 61, no. 7, pp. 4034–4059, July 2015.

[2] Y. Chen, Y. Chi, and A. J. Goldsmith, “Estimation of simultaneously
structured covariance matrices from quadratic measurements,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 7669–7673.

[3] G. Dasarathy, P. Shah, B. N. Bhaskar, and R. D. Nowak, “Sketching
sparse matrices, covariances, and graphs via tensor products,” Informa-
tion Theory, IEEE Transactions on, vol. 61, no. 3, pp. 1373–1388, 2015.

[4] G. Leus and Z. Tian, “Recovering second-order statistics from com-
pressive measurements,” in Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP),, 2011, pp. 337–340.

[5] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compressive co-
variance sensing: Structure-based compressive sensing beyond sparsity,”
Signal Processing Magazine, IEEE, vol. 33, no. 1, pp. 78–93, 2016.

[6] D. D. Ariananda and G. Leus, “Compressive joint angular-frequency
power spectrum estimation,” in Signal Processing Conference, Proceed-
ings of the 21st European. IEEE, 2013, pp. 1–5.

[7] J. M. Bioucas-Dias, D. Cohen, and Y. C. Eldar, “Covalsa: Covariance
estimation from compressive measurements using alternating minimiza-
tion,” in Signal Processing Conference (EUSIPCO), 2014 Proceedings
of the 22nd European. IEEE, 2014, pp. 999–1003.

[8] J. Lundén, V. Koivunen, A. Huttunen, and H. V. Poor, “Collaborative
cyclostationary spectrum sensing for cognitive radio systems,” Signal
Processing, IEEE Transactions on, vol. 57, no. 11, pp. 4182–4195, 2009.

[9] K. Werner, M. Jansson, and P. Stoica, “On estimation of covariance
matrices with kronecker product structure,” Signal Processing, IEEE
Transactions on, vol. 56, no. 2, pp. 478–491, 2008.

[10] J. C. De Munck, H. M. Huizenga, L. J. Waldorp, and R. M. Heethaar,
“Estimating stationary dipoles from meg/eeg data contaminated with
spatially and temporally correlated background noise,” Signal Process-
ing, IEEE Transactions on, vol. 50, no. 7, pp. 1565–1572, 2002.

[11] T. Tsiligkaridis and A. Hero, “Covariance estimation in high dimensions
via kronecker product expansions,” Signal Processing, IEEE Transac-
tions on, vol. 61, no. 21, pp. 5347–5360, 2013.

[12] K. Greenewald, T. Tsiligkaridis, and A. O. Hero III, “Kronecker sum
decompositions of space-time data,” arXiv preprint arXiv:1307.7306,
2013.

[13] K. Greenewald and A. O. Hero, “Regularized block toeplitz covariance
matrix estimation via kronecker product expansions,” in Statistical
Signal Processing (SSP), 2014 IEEE Workshop on. IEEE, 2014, pp.
9–12.

[14] M. F. Duarte and R. G. Baraniuk, “Kronecker compressive sensing,”
Image Processing, IEEE Transactions on, vol. 21, no. 2, pp. 494–504,
2012.

[15] O. Mehanna and N. Sidiropoulos, “Frugal sensing: Wideband power
spectrum sensing from few bits,” Signal Processing, IEEE Transactions
on, vol. 61, no. 10, pp. 2693–2703, 2013.

[16] Y. Chi, “One-bit principal subspace estimation,” in Signal and Informa-
tion Processing (GlobalSIP), 2014 IEEE Global Conference on. IEEE,
2014, pp. 419–423.
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