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Abstract—A sparsity-aware least-mean mixed-norm (LMMN)
adaptive filter algorithm is proposed for sparse channel es-
timation applications. The proposed algorithm is realized by
incorporating a sum-log function constraint into the cost function
of a LMMN which is a mixed norm controlled by a scalar-
mixing parameter. As a result, a shrinkage is given to enhance
the performance of the LMMN algorithm when the majority of
the channel taps are zeros or near-zeros. The channel estimation
behaviors of the proposed reweighted sparse LMMN algorithm
is investigated and discussed in comparison with those of the
standard LMS and the least-mean square/fourth (LMS/F) and
previously sparse LMS/F algorithms. The simulation results
show that the proposed reweighted sparse LMMN algorithm
is superior to aforementioned algorithms with respect to the
convergence speed and steady-state error floor.

Keywords:least-mean mixed-norm, LMS, LMS/F, sparse
channel estimation, sparse adaptive filtering

I. INTRODUCTION

With the increasing of the wireless communication tech-
nologies, broadband transmission has been becoming an im-
portant method to obtain high date rate and wide bandwidth
for modern wireless communication systems, such as mobile
communications [1], [2], [3]. Coherent detection at the receiver
side needs accurate state information of the channel, which
is usually implemented by using adaptive filter algorithms
[4], such as least-mean square (LMS) [5], affine projection
algorithm [6], least-mean sauqre/fourth (LMS/F) [7], [8], [9]
and least-mean mixed-norm (LMMN) algorithms [10]. Fur-
thermore, the measured broadband multi-path wireless channel
is always sparse, which means that most of the channel taps are
zeros or near-zeros, while only a few channel taps are dom-
inant taps whose magnitudes are non-zeros [11]. Unluckily,
these conventional adaptive filter algorithms cannot utilize the
inherent sparsity properties of the sparse broadband multi-path
channel.

For these reasons, zero-attracting LMS (ZA-LMS) algo-
rithms have been proposed by introducing a l1-norm penalty
into the cost function of the conventional LMS and variable
step-size LMS algorithms to speed up the convergence and to
reduce the channel estimation bias [12], [13]. After that, the
zero-attracting technique has been used to develop sparse LMS
algorithm by using lp-norm for channel estimation [14]. How-
ever, the LMS algorithms are sensitive to the scaling of the in-

put signal and the noise in the low signal-to-noise environment
and colored input signals. To improve the performance of the
LMS-based channel estimation algorithms, zero-technologies
are introduced into the affine projection algorithms [15],
[16], [17], [18], [19] and Set-membership normalized least-
mean-square (SN-NLMS) algorithm [20]. However, the affine
projection algorithms have high computational complexity. By
compromising the complexity and estimation performance,
a LMS/F algorithm has been presented by the combination
of the LMS and least-mean fourth (LMF) algorithms and
its sparse form has been proposed and investigated over a
sparse wireless channel in low signal-to-noise environment
[21], [22], [23]. However, the performance are affected by
the LMF because the convergence of the LMF algorithms
are sensitive to the proximity of the adaptive weights to the
optimal Wiener solution. What’s more, a LMS/F algorithm
and its sparse forms (zero-attracting LMS/F (ZA-LMS/F) and
reweighted ZA-LMS/F (RZA-LMS/F)) have been proposed
to improve both the LMS and LMF algorithm for channel
estimation applications [7], [23]. Unfortunately, the computa-
tional complexity is increased by using a logarithm in its cost
function.

Recently, a LMMN algorithm has been reported to over-
come the sensitivity and to improve the channel estimation bias
behavior [10]. Although the LMMN algorithm can improve the
estimation performance, it cannot utilize the sparse structure
of the pre-known channel state information. In this paper, a
sparsity-aware LMMN algorithm is proposed by using a linear
combination of the l2 and l4 norms of the estimation error
and a sum-log constraint on the estimation channel vector to
exploit the sparsity properties of the channel and to improve
the estimation behaviors of the LMMN algorithm, which is
denoted as reweighted sparse LMMN (RS-LMMN) algorithm.
The simulation results obtained from a sparse channel are
given to verify that the proposed RS-LMMN algorithm is
superior to those of the conventional LMS, LMS/F, LMMN
and previously proposed sparse LMS/F algorithms.

The paper is constructed as follows. Section 2 reviews the
traditional LMMN algorithm. In Section 3, we present the
proposed sparse-aware LMMN algorithm. Section 4 gives the
performance of the proposed sparse LMMN algorithm. Finally,
this paper is concluded in Section 5.
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II. CONVENTIONAL LMMN ALGORITHM

The LMMN algorithm is used to estimate a sparse
multi-path fading channel. We assume the unknown s-
parse finite impulse response (FIR) channel vector is h =
[h0, h1, · · · , hN−1]

T whose length is N . The LMMN-based
channel estimation is to use the input signal x(n), the output
of the FIR channel y(n) and the instantaneous error e(n) to
estimate the sparse channel h, and hence the desired signal at
the receiver side is given by [10]

d(n) = hTx(n) + v(n), (1)

where x(n) = [x(n), x(n− 1), · · · , x(n−N − 1)]T and
v(n) is the additive white Gaussian noise (AWGN) which is
independent with input signal x(n). Then, the instantaneous
error e(n) is defined as

e(n) = d(n)− ĥT (n)x(n), (2)

where ĥ(n) is the estimated channel vector at the iteration n.
The cost function that is minimized in the LMMN-based chan-
nel estimation is a linear combination of J2(n)

∆
= E{e2(n)}

and J4(n)
∆
= 1/4E{e4(n)}, which is given by

J(n) =
δ

2
J2(n) +

1− δ

4
J4(n), (3)

where 0 ≤ δ ≤ 1 controls the mixture. The gradient minimiza-
tion technique is used to find a solution of the optimization
problem and the update equation of the LMMN algorithm is
written as

ĥ(n+1) = ĥ(n)+µLMMNe(n){δ+(1− δ)e2(n)}x(n), (4)

where µLMMN is the step-size. It is worth noting that the
LMMN algorithm is a LMS algorithm when δ = 1, while
the LMMN algorithm is a LMF algorithm when δ is set to 0.
Thus, the advantages of both the LMS and LMF algorithms
can be utilized with intermediate values of δ.

III. PROPOSED REWEIGHTED SPARSE LMMN ALGORITHM

On the basis of the LMMN algorithm and previously zero-
attracting LMS and LMS/F algorithms [12], [13], [14], [21],
[23], [24], we propose a RS-LMMN algorithm. The proposed
algorithm is realized by incorporating a sum-log function con-
straint of the channel coefficient vector into the cost function
of the LMMN algorithm, which is based on the compressed
sensing (CS), sparse enhancement and zero-attracting concepts
[12], [25], [26]. Thereby, the new cost function is defined as

Jp(n) =
δ

2
J2(n) +

1− δ

4
J4(n) + γ′

N∑
i=1

log

1 +

∣∣∣ĥi(n)
∣∣∣

ε′

,

(5)
where γ′ > 0 and ε′ > 0. The gradient vector which defines
the search direction is

∇Jp(n)
∆
=

∂Jp(n)

∂ĥ(n)
= −E{e(n){δ + (1− δ)e2(n)}x(n)}

+γ′
∂

N∑
i=1

(
1 +

|ĥi(n)|
ε′

)
∂ĥ(n)

.

(6)

A stochastic gradient algorithm is defined based on an instan-
taneous estimation of ∇Jp(n). In terms of channel estimation
vector ĥ(n) and equation (6), the update equation of the
proposed RS-LMMN algorithm is

ĥi(n+ 1) = ĥi(n) + µRSe(n){δ + (1− δ)e2(n)}xi(n)

−ρ
sgn[ĥi(n)]

1 + ε
∣∣∣ĥi(n)

∣∣∣ .

(7)
or equivalently, in vector form

ĥ(n+ 1) = ĥ(n) + µRSe(n){δ + (1− δ)e2(n)}x(n)︸ ︷︷ ︸
LMMN algorithm

−ρ
sgn[ĥ(n)]

1+ ε
∣∣∣ĥ(n)∣∣∣︸ ︷︷ ︸

Sparse penalty

.

(8)
where ρ = µRSγ

′ε is a regularization parameter which is used
for balancing the estimation error and sparsity strength and
ε = 1/ε′ is to control the reweighting factor. sgn(·) is a
component-wise function which is defined as

sgn(ĥ) =


ĥi∣∣∣ĥi

∣∣∣ , ĥi ̸= 0

0, ĥi = 0

. (9)

Comparing (4) and (8), we note that the proposed RS-
LMMN algorithm has an additional sparse penalty term de-
noted as zero attractor, which always attracts the channel taps
to zero. The zero attractor is controlled by the parameter ρ.
Therefore, the proposed RS-LMMN algorithm can speed up
the convergence when most of the channel taps are zeros or
near-zeros, which means the channel is sparse. From the zero
attractor of the proposed RS-LMMN algorithm, it is found
that there is a strong zero attracting on the channel taps
whose magnitudes are compared to ε′. On the contrary, the
shrinkage exerted on the channel taps with magnitudes larger
than ε′ is weak. Thus, the proposed RS-LMMN algorithm can
selectively assign different zero attracting to the channel taps.
Here, we can see that the sum-log function is close to the
l0-norm, which results in a different weight assignment to the
zero-attracting term to obtain a fast convergence.

IV. RESULTS AND DISCUSSIONS

In this section, 100 independent Monte Carlo runs are used
to obtain a point for all the adaptive filter algorithms. The
channel estimation performance is evaluated by using mean
square error (MSE) which is defined as

MSE{ĥ(n)} = E

{∥∥∥h− ĥ(n)
∥∥∥2
2

}
, (10)

where E{·} denotes the expectation operator, h is the actual
channel and ĥ(n) is the estimated channel, respectively. In
this paper, a sparse channel with length N = 16 is employed
and the non-zero channel taps are set as K ∈ {1, 2, 4}, which
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Fig. 1. Convergence of the proposed RS-LMMN algorithm for K = 1.
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Fig. 2. Steady-state behavior of the proposed RS-LMMN algorithm for K =
1.

is similar to the previous researches in [12], [13], [14], [21],
[23]. The K non-zero taps are Gaussian distribution and their
positions are randomly distributed within the length of the
channel and E

{
∥h∥22

}
= 1. The transmitted signal power is

1, while the noise power is 10−1. Thus, the signal-to-noise
(SNR) is 10 dB.

The convergence of the proposed RS-LMMN algorithm is
investigated and compared with conventional LMS, LMS/F,
LMMN, ZA-LMS/F and RZA-LMS/F algorithms. All the sim-
ulation parameters are optimized to obtain the same estimation
error floor, which are listed as follows: µLMS = 0.005,
µLMS/F = 0.015, µLMMN = 0.008, µZA−LMS/F = 0.02,
µRZA−LMS/F = 0.027, µRS = 0.015, ρZA−LMS/F = 5×10−5,
ρRZA−LMS/F = 2×10−4, ρ = 3×10−4, ε = 20, δ = 0.4, λ =
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Fig. 3. Steady-state behavior of the proposed RS-LMMN algorithm for K =
2.
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Fig. 4. Steady-state behavior of the proposed RS-LMMN algorithm for K =
4

0.8, where µLMS, µLMS/F, µZA−LMS/F, µRZA−LMS/F are the
step-sizes of the LMS, LMS/F, ZA-LMS/F and RZA-LMS/F
algorithms, respectively, while ρZA−LMS/F and ρRZA−LMS/F

are the regularization parameters of the ZA-LMS/F and RZA-
LMS/F algorithms, respectively. λ is the positive constant of
LMS/F algorithm which is to balance the convergence and the
steady-state performance. We can see from Fig. 1 that our pro-
posed RS-LMMN algorithm has the fastest convergence speed
in comparison with the conventional LMS, LMS/F, LMMN,
ZA-LMS/F and RZA-LMS/F algorithms. This is because the
proposed RS-LMMN algorithm not only use the benefits of
the LMS and LMF algorithms but also can provide a zero
attractor to attract the zero and near-zero taps to zero quickly.
Fig. 2 shows the steady-state performance of the proposed RS-
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Fig. 5. Effects of different step-sizes µRS on the proposed RS-LMMN
algorithm.

LMMN algorithm compared with conventional LMS, LMS/F,
LMMN, ZA-LMS/F and RZA-LMS/F algorithms for K = 1
and the simulation parameter are to obtain the same con-
vergence speed, where µLMS = 0.006, µLMS/F = 0.0125,
µLMMN = 0.0065, µZA−LMS/F = µRZA−LMS/F = 0.012,
µRS = 0.006. It is found that the proposed RS-LMMN
algorithm has the lowest steady-state error floor with the
same convergence speed as that of the other algorithms. This
is because the proposed RS-LMMN algorithm is benefited
from hybrid power optimization criterion. The steady-state
performance of the proposed algorithm for K = 2 and K = 4
are shown in Figs. 3 and 4, respectively. We note that the
steady-state error floor is deteriorated with an increment of the
sparse level K. However, our proposed RS-LMMN algorithm
still has the lowest steady-state error floor for K = 2 and
K = 4.

Form the sparse channel estimation aforementioned, we can
see that our proposed RS-LMMN algorithm always outper-
forms the LMS, LMS/F and LMMN algorithms and the sparse
LMS/F algorithms. However, the parameters of the proposed
RS-LMMN algorithm have important effects on the estimation
performance. Therefore, µRS, ρ and δ are investigated in detail.
Form Fig. 5, we can see that the step-size µRS of the proposed
RS-LMMN algorithm gives important effects on both the
convergence speed and steady-state error. With an increment of
the parameter µRS, the convergence speed increased while the
steady-state error is getting worse. Thus, we can select proper
parameter µRS to balance the convergence and the steady-
state behavior. When µRS is small, the convergence speed is
too slow. On the contrary, the convergence speed is improved
by sacrificing the mean-square-error (MSE) for large µRS.

Since the proposed RS-LMMN algorithm introduces a zero
attractor in its iterations which can be controlled by the
regularization parameter ρ, parameter ρ is selected to evaluate

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

0

5

Iterations

M
S

E
 (

d
B

)

=5  10
-4

=1  10
-4

=5  10
-5

=1  10
-5

=5  10
-6

×

×

×

×

×

ρ

ρ

ρ

ρ

ρ

Fig. 6. Effects of different regularization parameter ρ on the proposed RS-
LMMN algorithm.

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

0

5

Iterations

M
S

E
 (

d
B

)

LMMN =0.3

RZA-LMMN =0.3

LMMN =0.5

RZA-LMMN =0.5

LMMN =0.7

RS-LMMN =0.7

δ

δ

δ

δ

δ

δ

Fig. 7. Steady-state behavior of the proposed RS-LMMN algorithm with
different δ.

the effects on both the convergence and steady-state error
floor. Its effects are illustrated in Fig. 6. It is found that
the parameter ρ mainly affect the steady-state performance
of the proposed RS-LMMN algorithm. As ρ increases from
ρ = 5× 10−6 to ρ = 1× 10−4, the steady-state error floor is
reduced, which means that the proposed RS-LMMN algorithm
can achieve good estimation performance. Unluckily, the con-
vergence speed becomes slow and the steady-state error floor
increases for ρ = 5× 10−4 because the small ρ exerts a weak
zero-attracting on the zero-attractor, while the large ρ gives
strong zero-attracting on the channel coefficients.

Moreover, the inherent parameter δ can affect the perfor-
mance of the LMMN algorithm as well as the proposed RS-
LMMN algorithm. Thereby, the effect of the parameter δ was
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investigated herein and the simulated results are shown in
Fig.7. We can see that the proposed RS-LMMN algorithm
still converges faster than that of the conventional LMMN
algorithm. When δ increases from 0.3 to 0.7, the steady-
state error floor is becoming worse. Additionally, the proposed
RS-LMMN algorithm is more sensitive to the δ according
to the MSE. In a word, the proposed RS-LMMN algorithm
outperforms the conventional LMS, LMS/F, LMMN, ZA-
LMS/F and RZA-LMS/F algorithms by properly selecting the
parameters mentioned above.

V. CONCLUSION

In this paper, a reweighted sparse LMMN has been proposed
for sparse channel estimation applications. The derivation
of the proposed RS-LMMN algorithm has been analyzed
by exerting a sum-log penalty on the cost function of the
conventional LMMN algorithm. The convergence and channel
estimation performance of the proposed RS-LMMN algorithm
are investigated over a sparse channel. The simulation results
obtained from the sparse channel estimation were given to
show that the proposed RS-LMMN algorithm has fastest
convergence and lowest steady-state error floor and achieves
about 6.5 dB gain compared to the conventional LMMN
algorithm when the channel is sparse. In the presentation,
we will compare the channel estimation in comparison with
conventional LMS, LMF, LMS/F and their sparse-aware forms.
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