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Abstract—This paper introduces a framework for distributed
parallel image signal extrapolation. Since high-quality image
signal processing often comes along with a high computational
complexity, a parallel execution is desirable. The proposed frame-
work allows for the application of existing image signal extrapo-
lation algorithms without the need to modify them for a parallel
processing. The unaltered application of existing algorithms is
achieved by dividing input images into overlapping tiles which
are distributed to compute nodes via Message Passing Interface.
In order to keep the computational overhead low, a novel image
tiling algorithm is proposed. Using this algorithm, a nearly
optimum tiling is possible at a very small processing time. For
showing the efficacy of the framework, it is used for parallelizing
a high-complexity extrapolation algorithm. Simulation results
show that the proposed framework has no negative impact on
extrapolation quality while at the same time offering good scaling
behavior on compute clusters.

Index Terms—Parallelization, Tiling, Message Passing Inter-
face, Image Signal Extrapolation

I. INTRODUCTION

Looking back at the recent years, it can be discovered that

the resolution of images and videos has steadily increased.

This trend is very likely to persist for the coming years,

introducing challenges to the algorithms and platforms that

are utilized for processing this data. One of the problems

that further arises is that with the high resolutions, a demand

for a high quality processing comes along which typically

further increases the complexity. This paper covers one class

of image processing algorithms which is very important and

at the same time computationally very demanding: image

signal extrapolation. The task of image signal extrapolation

is that an image which contains missing or undesired areas is

reconstructed by extrapolating the available information into

the unavailable regions. This extrapolation is required for very

different tasks like error concealment, inpainting, defect pixel

compensation, or resolution enhancement. In literature, there

exist very different algorithms for solving this underdeter-

mined problem as, e.g., patch-based inpainting [1], variational

expectation-maximization based algorithms [2], statistically

driven modeling [3], or the sparsity-based Frequency Selective

Extrapolation (FSE) [4]. Comparing existing extrapolation

algorithms, it can be discovered that as soon as they are able

to reach a high reconstruction quality, they only achieve this

at the cost of a high computational complexity as shown for

example in [5].

This problem can be alleviated by exploiting the available

compute power in the best possible way. As the single-thread

performance of a central processing unit (CPU) could not be

further increased that strongly, in the recent years, the trend

came up to use multi-core designs for CPUs [6] which follow

a shared-memory model and therefore allow for a processing

of several threads on the same data. The use of special devices

like GPUs or the Intel Xeon Phi could be regarded as a further

extension of this concept. However, algorithms always would

have to be adapted to the multi-threaded operation. As an

example, in [7], it was shown how FSE could be effectively

adapted to this, yielding a high parallelization gain.

However, the problem with shared-memory processing is

that the number of CPU cores that is available in a computer

cannot be arbitrarily enlarged and that the cost of computers

which contain more than one CPU increases disproportion-

ately. Thus, for further increasing the computing power, one

has to switch to compute clusters. There, the CPUs do not have

access to a shared memory and have to explicitly communicate

among each other to solve the given task. One concept which

allows for this is the Message Passing Interface (MPI) and

especially its open source implementation OpenMPI [8]. This

technique is quite often used in High Performance Computing

and large effort is spent for adapting algorithms to exploit

the capabilities of the underlying cluster in the best possible

way. However, this often results in extensive redesigns and the

direct use of already available algorithms often is not possible.

In this paper, a framework is introduced which allows for

the use of compute clusters for image signal extrapolation

purposes without the need to redesign the underlying algo-

rithm. The parallelization builds up on OpenMPI, but at the

same time the signal extrapolation algorithms do not have

to be adapted and arbitrary algorithms can be used without

modification. This is achieved by dividing the input image

into overlapping tiles that are distributed to the compute nodes.

For this purpose, a novel image tiling algorithm is introduced

which operates very fast but at the same time yields an efficient

tiling of the image. Within this paper, FSE will be considered

as an example algorithm since it allows for a high quality

reconstruction while at the same time being computationally

demanding [4].

Concepts for the parallelization of image processing tasks

on clusters already exist in literature, however, they are not

suited for image signal extrapolation. For example, in [9], a

small scale division is considered with focus on very simple
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Fig. 1. Extrapolation framework for parallel extrapolation of unknown areas in the input image.

operations on large data sets. In [10], a middleware for vision

processing is introduced at a very high abstraction level and

the authors in [11] especially focus on the visualization of

large amounts of data.

The paper is structured as follows. In the next section,

the FSE algorithm is briefly revisited in order to provide a

compact overview and to discuss the requirements of image

signal extrapolation algorithms on the parallel extrapolation

framework. Afterwards, the proposed distributed parallel ex-

trapolation framework is introduced. Finally, simulation results

are presented for assessing the abilities of the proposed con-

cept, followed by the conclusion.

II. BRIEF OVERVIEW OF FREQUENCY SELECTIVE

EXTRAPOLATION

The Frequency Selective Extrapolation (FSE) [4] is a very

generic signal extrapolation algorithm which also offers a high

reconstruction quality. The basic idea of FSE is to divide an

image into small blocks and reconstruct missing pixels within

each block by generating a sparse model of the signal as

weighted superposition of Fourier basis functions. To achieve

the modeling, not only the known pixels of the currently

considered block are used, but rather pixels from neighboring

blocks as well, in order to additionally exploit this information.

On top of this, in [7] an algorithm is introduced for taking

the shape and the distribution of the erroneous or unavailable

pixels into account for deriving a useful processing order.

In doing so, the algorithm is able to close large connected

areas to be extrapolated from the outer margins to the center.

Using this, the available information from all directions is used

allowing for a stable estimation of unavailable pixels, even

though the spatial distance to known pixels might be large.

In general, FSE performs best, if the region to be extrapo-

lated is completely surrounded by known samples. This is a

property that is also true for other image signal extrapolation

algorithms and all algorithms perform inferior if there is no

spatial information all around the boundaries of the area to be

extrapolated.

III. OPENMPI-PARALLELIZATION FRAMEWORK

In the following, the novel parallelization framework is

introduced that allows for the extrapolation of image signals on

a compute cluster of independent nodes without the necessity

to redesign the underlying extrapolation algorithm. The basic

idea of the framework is to divide the image to be extrapolated

in a set of rectangular tiles where the number of tiles is equal

to the number of compute nodes. As the extrapolation quality

typically is higher if the area to be extrapolated is completely

enclosed by known samples, the framework uses an overlap

between the tiles. In doing so, distortions by boundary effects

can be alleviated and an independent processing of the tiles

at the compute nodes is possible. The parallel extrapolation

framework can be described as shown in Fig. 1. Starting with

the input image with regions to be extrapolated, the master first

calculates the parameters of the tiling. Afterwards, the image

is divided into the tiles while a stripe of d samples width is

added to each tile to allow an overlap of the different tiles. In

doing so, it is possible to consider pixels in one tile for the

extrapolation in the neighboring tile, as well. In the next step,

the tiles are distributed to the compute nodes via MPI. In order

to avoid delays, a non-blocking communication should be used

for this. All these tiles can be processed independently at the

compute nodes and the unknown areas can be extrapolated

there. The extrapolated tiles are collected by the master again,

the overlapping regions are removed, and the tiles are merged

together in order to obtain the output image.

Of course, the overlap of the tiles is necessary for having

enough information available for the extrapolation, even in

the case that the area to be extrapolated is located at the outer

margin of the tile. However, as the overlapping regions also

have to be processed, a computational overhead arises which

harms the overall efficiency. Thus, it is of great importance

to use an intelligent tiling in order to keep the computational

overhead as small as possible. Since the number of pixels

which have to be processed as overhead directly depends on

the length of the boundary of the tiles, the tiling should be

carried out in such a way that the tiles are preferably compact,

that is to say, have a good ratio between the area and the length

of the boundary. In the ideal case, this would be squares.

However, this ideal case usually cannot be assured, since

the geometry of the input image and the number of tiles have

to be considered. Thus, a sensible tiling algorithm is required

which satisfies the following properties:

1) The tiling should produce tiles of approximately equal

size in order to put equal load to each compute node.

2) The boundary of the tiles should be as small as possible

in order to keep overhead caused by the overlapping

regions small.

3) The tiling algorithm itself has to exhibit a low complex-

ity as it is running solely at the master.
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In [12], an algorithm is proposed which perfectly fulfills the

first two properties. This algorithms achieves an optimum

tiling, however this is bought at the expense of a high

computational complexity. The algorithm can be efficiently

implemented recursively, but as it makes use of a brute-force

search, its complexity increases exponentially with the number

of tiles. Thus, the third property is not met. Alternatively,

one might think of tiling an image into horizontal or vertical

stripes. This could be achieved extremely efficient and a

division into equally sized tiles is no problem. However, the

boundary length is longer than necessary, yielding a high

computational overhead.

As neither of these two algorithms can fulfill all require-

ments, a novel tiling algorithm is proposed in the following.

This algorithm can be used within the parallel extrapolation

framework presented above and provides a tiling which is

nearly as good as the one presented in [12] while the compu-

tational complexity is of the same magnitude as for the case

of a fixed vertical or horizontal division.

The task for the proposed tiling algorithm is to divide

an image of width W and height H into N tiles. For the

presentation, landscape orientation is assumed, i.e., W > H .

If this not fulfilled, the coordinate axes have to be swapped

accordingly. The first step is to calculate the aspect ratio

r = W/H (1)

of the image. This is necessary in order to determine how

many rows of tiles should be present in the image. Since the

primary objective of the tiling algorithm is to obtain compact

tiles that have a good ratio between area and boundary, the

aspect ratio is considered for calculating the number of rows

nR = max
(

1, round
(

√

N/r
))

. (2)

In this context, the rounding operation is necessary since nR

obviously has to be integer.

Afterwards, the number of tiles nC in every row is deter-

mined. As nC also has to be integer, it is not possible to just

divide the desired number of tiles by the number of rows,

but rather they have to be distributed unequally. In order to

allow for a fair distribution of tiles per row, nC is calculated

as follows

nC =

{

⌊N/nR⌋ for i > N mod nR

⌈N/nR⌉ for i ≤ N mod nR

(3)

where i depicts the row index. After the number of tiles in the

currently considered tile row has been determined, the height

hT of all tiles in this row have to be determined. Of course, this

depends on the number of tiles in the row and is determined

by

hT = ⌊H · nC/N⌋+ ⌊((H · nC) mod N) /nR⌋. (4)

The height of the last row is selected so that the whole image

height is covered. Next, width wT of the different tiles in the

currently considered row has to be calculated. Again, it has to

Algorithm 1 Proposed algorithm for dividing an image into

compact tiles. xT and yT depict offset of the tiles, wT and

hT their width and height. The input image is assumed to be

in landscape format.

Input: Image width W , image height H , number of tiles N
Output: N compact tiles of approximately equal area

Aspect ratio r = W/H

Number of rows nR = max
(

1, round
(

√

N/r
))

xT = 0, yT = 0
for all i = 1, ..., nR do

5: Number of tiles in current row

nC =

{

⌊N/nR⌋ for i > N mod nR

⌈N/nR⌉ for i ≤ N mod nR

hT = ⌊H · nC/N⌋+ ⌊((H · nC) mod N) /nR⌋
if i = nR then hT = H − yT
end if

10: for all j = 1, ..., nC do

wT =

{

⌊W/nC⌋ for j > W mod nC

⌈W/nC⌉ for j ≤ W mod nC

Store xT , yT , wT , hT for current tile

xT = xT + wT

end for

15: yT = yT + hT , xT = 0
end for

be considered that wT is integer. With j depicting the index

of the tile in the current row,

wT =

{

⌊W/nC⌋ for j > W mod nC

⌈W/nC⌉ for j ≤ W mod nC

(5)

follows.

By applying the above presented operations, the tiling

parameters can be determined quite efficiently. In order to

provide a compact overview of the proposed tiling algorithm,

its pseudo code is given in Algorithm 1. The outputs of the

algorithm are on the one hand the horizontal and vertical

offsets xT and yT of the individual tiles, and on the other hand

the corresponding widths wT and heights hT . In addition to

the pseudo code, Fig. 2 shows an example for tiling an image

of width W = 1024 and height H = 480 into N = 22 tiles,

either in vertical tiles, or using the tiling from Bezrukov [12],

or the proposed one. It can be discovered, that the objective of

the algorithm is fulfilled and that the output tiles are compact

as well as of equal size, in the same way as would be achieved

by the elaborate algorithm from [12].

IV. SIMULATIONS AND RESULTS

For evaluating the performance of the proposed parallel

image signal extrapolation framework, tests have been carried

out on a small test cluster. The master of the cluster is

an Intel Core2 Quad Q9550 and for the computation four

AMD Opteron 6274 are available. Each of these CPUs has 8
independent cores. By using every core as independent node,

the cluster is able to provide up to 32 compute nodes of

equal speed and a tiling of up to the same number can be
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Fig. 2. Example for tiling an image of width W = 1024 and height H = 480

in N = 22 tiles.

tested. The cluster is running the Rocks Cluster Distribution

system [13] with OpenMPI version 1.6.2. The FSE used for

the extrapolation is written in C and is running single-threaded

on each node. The parameters for FSE have been selected

according to [7] and a block size of 4 is used. The used test

images are shown in Fig. 3 and are called Lion, Elephant and

Giraffe and are of size of 6024×4024 pixels. Furthermore, two

masks that define the areas to be extrapolated are considered.

Using Mask1, 14% of the pixels have to be extrapolated, for

Mask2 62% of the pixels have to be extrapolated.

Since the extrapolation algorithm is left unchanged, there

are two factors in the proposed parallel extrapolation frame-

work that have an impact on the performance. This is the

algorithm used for the tiling on the one hand and the size d
of the overlap between the tiles on the other hand. In order to

analyze the first one, Fig. 4 shows the time that is necessary

just for calculating the tiling parameters at the master. For

this, the cases are considered that a simple vertical tiling,

the algorithm from Bezrukov [12], or the proposed algorithm

is used. Thereby, it has to be noted that the measurement

accuracy of the time is of the magnitude of 10−7 seconds.

Examining the plot, it can be seen that the time necessary for

the vertical and the proposed tiling is extremely small and in

the order of the measurement accuracy while the calculation

time of the Bezrukov tiling exponentially increases with the

number of tiles to be determined. For 32 tiles, this already ends

up in 79 seconds just for calculating the tiling parameters.

The second important parameter is the width d of the

overlapping areas. As discussed above, a proper overlap is

required as otherwise boundary effects may occur which harm

the overall extrapolation quality. However, the overlapping

Fig. 3. Test images Lion, Elephant, Giraffe and details of size 240 × 160

pixels of masks Mask1 and Mask2 used for evaluation.
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Fig. 4. Processing time for calculation of tile parameters. Measurement
accuracy is of the magnitude of 10

−7 seconds.

areas increase the absolute area to be processed, having an

impact on the overhead for the parallelization. In order to

assess the impact on the extrapolation quality, Fig. 5 shows

the reconstruction quality in terms of PSNR with respect to

the width d of the overlapping area for the test image Elephant

and Mask2. It can be seen quite well that small values of d
yield a reduced extrapolation quality. However, it can also be

seen that an overlap of d = 32 pixels is sufficient and larger

overlapping areas do not yield any improvement. A similar

behavior can be observed for the other test images and mask,

as well.

Finally, Fig. 6 shows the speedup compared to a single-

threaded operation on one node. Here, an overlap of d = 32 is

used and again the three different tiling modes are considered.

It can be seen quite well that the vertical tiling scales less well.

This is due to the fact that the vertical tiling produces an un-

necessary large overhead. However, it can also be discovered

that the tiling of the proposed algorithm is as good as the one

from the optimum algorithm [12] and they scale equally for

small number of nodes. If the number of nodes increases, the

required time for calculating the tiles becomes significant for

the Bezrukov tiling, harming the overall performance. For 32
nodes, the performance even drops below the vertical tiling.

All together, the proposed tiling allows a speedup of a factor of

22 if all nodes are used. Of course, the speedup is smaller than

the number of nodes, however, this is due to different reasons.

First, the actual area to be processed is larger due to the

overlapping tiles. Second, additional time is required for tiling

the image, distributing the tiles to the nodes and collecting and

2016 24th European Signal Processing Conference (EUSIPCO)

84



0 10 20 30 40 50 60 70 80 90
36.2

36.25

36.3

36.35

36.4

36.45

36.5

36.55

36.6

Overlap d

P
S

N
R

[d
B

]

rS

rS

rS

rS

rS rS rS rS rS rS rS

bc

bc
bc bc

bc bc bc bc bc bc bc

**
** * * * * * * *

Vertical tiling
Bezrukov tiling
Proposed tiling

rS
bc

*

Fig. 5. Influence of overlap size d on reconstruction quality for test image
Elephant and Mask2.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Number of nodes

S
p
ee

d
u
p

fa
ct

o
r

rS
r S rS

rS rS
rS rS

rS rS
rS rS

rS rS
rS rS

rS rS
r S rS

rS rS
rS rS

rS rS
rS rS

rS r S
rS rS

rS

bc
b c bc

bc bc
bc bc

bc bc
bc bc

bc bc
bc bc

bc bc
b c bc

bc bc
bc bc

bc bc
bc bc

bc b c bc
bc
bc

********************************

Vertical tiling
Bezrukov tiling
Proposed tiling

rS
bc

*

Fig. 6. Speedup of the reconstruction process with respect to the number of
nodes for test images with Mask2.

combining the processed tiles again. And finally, since the

number of samples to be extrapolated may vary from tile to

tile, the processing time per node varies accordingly. However,

since the overall time is determined by the longest running

node, this further reduces the parallelization gain.

Nevertheless, it has to be noted that the actual extrapolation

algorithm can be left unchanged allowing for the use of

existing algorithms without the need to adapt them to a parallel

processing. For this, a speedup of a factor of 22 still is very

beneficial. With smaller overlap d, a higher parallelization gain

would be possible, but at the cost of small quality impairments.

In order to show that the proposed parallel extrapolation

framework has no negative impact on the extrapolation quality,

Tab. I shows the difference in quality, measured in PSNR

and SSIM for the case that the proposed parallel framework

is used, compared to an extrapolation of the whole images

without tiling. Apparently, the difference is negligible and the

framework exhibits no negative impact on the extrapolation

quality, instead sometimes it may even lead to small gains.

V. CONCLUSIONS

In this paper, a novel framework for distributed parallel

image processing with application to signal extrapolation is

introduced. Using this framework, the underlying extrapolation

algorithms can be left unchanged and the parallelization is

TABLE I
LOSS IN PSNR / SSIM CAUSED BY USAGE OF PARALLEL FRAMEWORK

WITH 32 NODES COMPARED TO DIRECT EXTRAPOLATION.

Mask1 Mask2

Elephant 0.0041 dB / − 7.6 · 10−7
−0.0201 dB / − 3.5 · 10−5

Lion −0.0009 dB / 1.5 · 10−6 0.0046 dB / − 3.1 · 10−7

Giraffe −0.0023 dB / 1.6 · 10−7
−0.0090 dB / − 5.4 · 10−6

achieved by dividing the image into overlapping tiles. For

this purpose, a novel tiling algorithm is introduced which is

able to effectively divide the image into compact tiles and

therewith keeping the overhead small. Tests have shown that

a speedup of a factor of 22 is possible for the case that

32 nodes are used. At the same time, there is no negative

impact on the extrapolation quality compared to the case that

the underlying algorithm was directly applied to the whole

image. Further research aims at including a load balancing

to the tiling algorithm for making full use of heterogeneous

clusters. Additionally, the distributed parallel framework will

be extended to other signal processing tasks like denoising,

image rendering, or super-resolution.
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