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Abstract—In this paper we study the influence of directional
radio patterns of Bluetooth low energy (BLE) beacons on
smartphone localization accuracy and beacon network planning.
A two-dimensional model of the power emission characteristic
is derived from measurements of the radiation pattern of BLE
beacons carried out in an RF chamber. The Cramer-Rao lower
bound (CRLB) for position estimation is then derived for this
directional power emission model. With this lower bound on the
RMS positioning error the coverage of different beacon network
configurations can be evaluated. For near-optimal network plan-
ing an evolutionary optimization algorithm for finding the best
beacon placement is presented.

Index Terms: BLE, localization precision, CRLB, evolution-

ary algorithm

I. INTRODUCTION

Location-based services show promise in a variety of appli-

cation fields. Among them is the scenario of the so-called

industry 4.0, where in production facilities the location of

tools, workers and goods has to be tracked [1]. Another

example is the support of customers during their shopping

sprees [2]: Guidance to the requested product, promotion of

special offers, or information on ingredients are only a small

selection of conceivable applications.

All these services hinge on the availability of precise loca-

tion information. The task of position estimation can be solved

in various ways. Known approaches use visual (barcode, object

identification) or acoustic (ultrasound) information, magnetic

fields [3], data encoded in light (ceiling lights), radio signals

(WLAN, RFID, NFC, BLE) [4], dead reckoning [5] (inertial

measurement units), or combinations of the aforementioned

modalities [6], [7], [8].

Bluetooth low energy (BLE) based positioning has recently

received remarkable attention due to its low installation costs,

broad support by mobile end devices (smartphones) and low

energy consumption, both on the beacon and on the mobile

device side [9]. However, localization based only on BLE

usually suffers from low accuracy [10].

In this paper we study the influence of directional radio

patterns of BLE beacons on localization precision. Preliminary

work has been published by Patwari et al. in [11], where

the Cramér-Rao lower bound (CRLB) for omnidirectional

characteristics was discussed. Hossain et al. derived the CRLB

for a signal strength difference based localization system

[12], and the authors of [13] investigated the fundamental

performance limitations of a linear fusion approach where

multiple measurements from different information sources

were combined.

BLE localization is closely coupled with the task of network

planing, i.e., deciding where to place the beacons to achieve a

minimal localization error. In [14] an overview about common

network planing strategies for WiFi systems is presented.

Optimal strategies, however, have a computational issue. They

tend to be NP-hard because the computational effort grows

rapidly with the number of transmitters and the size of space.

Introducing a new variable, i.e., the orientation of the beacons,

will increase the computational demands even further.

The paper is organized as follows. In Sec. II a 2D-model for

the power radiation of the beacons is given, which is based on

laboratory measurements. The CRLB on the positioning error

is derived in Sec. III using this directional radiation model.

Subsequently, the influence of the direction dependency on

the RMS error is discussed in the experimental Sec. IV, where

the performance of a Maximum Likelihood (ML) estimator is

compared with the CRLB. In Sec. V an evolutionary algorithm

for near-optimal beacon network planning is presented, and we

end up with some conclusions in Sec. VI.

II. RSSI MODEL

Each beacon emits periodically an advertisement package

with a predefined signal strength. Devices receiving these

advertisement packages measure the signal strength in terms of

the “Received Signal Strength Indicator” (RSSI). The received

signal power can be modeled in the logarithmic domain by the

following log-normal fading model [8], [12]

P = P0 − 10η ln (d/d0) + n = P + n. (1)

Here, P0 is the RSSI level at reference distance d0, measured

in dB, η is a room specific constant which controls how

fast the power decays with the distance from the transmitter,

d is the distance between the beacon and the position of

the sensing device, and P denotes the mean RSSI value at

distance d. Further, n is a zero-mean normally distributed

random variable, which we call measurement noise in the

following. From experimental data the values of P0 and η
can be estimated via a least-squares fitting of equation (1) to

measurements.

A. Laboratory experiments

Experimental results show that in realistic scenarios the

model of equation (1) is not fulfilled. Especially the assump-

tion of a constant reference power P0 is usually violated by
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Fig. 1. Measured RSSI values in dB at 1m distance in antenna lab for
different azimuth and elevation angles.

a factor of up to ±10 dB and thus should be replaced by an

angular dependent reference power P0(α).

We measured the average emitted power of a beacon as

a function of the azimuth and the elevation angle in our

antenna laboratory using an Android smartphone. The results

are depicted in Fig. 1. While these particular results certainly

depend on the beacon and smartphone used, and will be

different if other devices are employed, it can be observed

in general that the radiation pattern of BLE beacons is not

omnidirecional. This fact will have a significant impact on the

localization accuracy, as we will show.

To simplify our model we reduce the 3D-measurements

to a 2D-problem in the following, by selecting the data at

90-degree elevation. This equals a setup where the beacons

and the smartphone are placed in the same horizontal plane.

However, the derivation of the CRLB in section III should in

principle be possible also for 3D-models.
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Fig. 2. Comparison between omnidirectional radiation characteristic ((a)
green line), and laboratory measurements ((a) and (b), red curve); approx-
imation of measured radiation pattern by Fourier polynomial of order m = 6
((b) blue curve).

B. Angular dependent RSSI model

The Fig. 2(a)) shows a polar plot of the beacon radiation

pattern and compares it with an omnidirectional pattern.

The pattern P (α) is measured at M discrete angles α =
[α1, . . . , αM ]. Since it is a 2π-periodic function we model

it as a Fourier polynomial P0(α) of order m:

P0(α) =
a0 + am

2
+

m
∑

k=1

ak cos (kα) + bk sin (kα) , (2)

where ak =
2

M

M
∑

i=1

P (αi) · cos (kαi) (3)

and bk =
2

M

M
∑

i=1

P (αi) · sin (kαi) . (4)

The function P0(α) fits exactly the experimental data at the

measured points α if m = M/2. However, a fairly small value

of m (i.e., m ≪ M/2) is already a good approximation to the

measurements, as can be seen in Fig. 2(b).

C. Beacon network setup

Assume N Bluetooth low energy beacons placed at differ-

ent positions in an environment. The i-th beacon is placed

at position Si = [sx,i, sy,i]
T , while the position of the

user (smartphone) at a certain point in time is given by

Uj = [ux,j, uy,j]
T . Thus it holds for the distance be-

tween the i-th beacon and the j-th smartphone’s position

dij =
√

(sx,i − ux,j)2 + (sy,i − uy,j)2, and the angle αij

from the beacon towards the smartphone is given by αij =
arctan ((sy,i − uy,j)/(sx,i − ux,j)).

III. CRAMÉR-RAO LOWER BOUND

According to the log-normal fading model of Eq. (1), the

measurement noise is normally distributed: n ∼ N
(

0, σ2

n

)

.

With the beacon positions assumed to be known, the proba-

bility density function (PDF) of the received signal strength

at user position Uj is given by

pP |U (Pi,j |Uj) =
1√
2πσn

exp

( −1

2σ2
n

(

Pi,j − P i,j

)2

)

(5)

with

P i,j =P0(αi,j)− 10η ln (di,j) (6)

=
a0 + am

2
+

m
∑

k=1

ak cos (k αi,j) + bk sin (k αi,j)

− 5η ln
(

(sx,i − ux,j)
2 + (sy,i − uy,j)

2
)

(7)

where we have set the reference distance to d0 = 1 [m]. Here,

P i,j is the expected mean RSSI value of the i-th beacon at

position Uj . Assuming that we have N i.i.d. observations we

get for the log likelihood

lUj
= −

N
∑

i=1

ln
{√

2πσn

}

− 1

2σn
2

N
∑

i=1

(

Pi,j − P i,j

)2

. (8)

For the Cramér-Rao lower bound we calculate the derivatives

of (8) with respect to ux,j and uy,j up to the second order.

For the first oder derivative we get

∂lUj

∂ux,j

=
1

σ2
n

N
∑

i=1

(

Pi,j − P i,j

)

· ∂

∂ux,j

(

P i,j

)

(9)
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and for the second order, respectively

∂2lUj

∂ux,j∂ux,j

= − 1

σ2
n

N
∑

i=1

∂

∂ux,j

(

P i,j

)

· ∂

∂ux,j

(

P i,j

)

+
1

σ2
n

N
∑

i=1

(

Pi,j − P i,j

)

· ∂2

∂ux,j∂ux,j

(

P i,j

)

(10)

The second order derivatives with respect to ux,j and uy,j are

∂2lUj

∂ux,j∂uy,j

= − 1

σ2
n

N
∑

i=1

∂

∂ux,j

(

P i,j

)

· ∂

∂uy,j

(

P i,j

)

+
1

σ2
n

N
∑

i=1

(

Pi,j − P i,j

)

· ∂2

∂ux,j∂uy,j

(

P i,j

)

. (11)

The Cramér-Rao lower bound on the variance of the k-th

dimension of the position estimate Ûj is then given by

var(Ûj,k) ≥ (J−1(Uj))kk (12)

with

J(Uj) = −E

{[

∂2

∂ux,j∂ux,j
lUj

∂2

∂ux,j∂uy,j
lUj

∂2

∂uy,j∂ux,j
lUj

∂2

∂uy,j∂uy,j
lUj

]}

. (13)

The square root of the sum of the diagonal elements

(J−1(Uj))kk is a lower bound for the root mean squared error

(RMSE) of the position estimate Ûj :

RMSE(Ûj) ≥
√

tr {J−1(Uj)} (14)

All derivatives are summarized in a box at the end of the paper.

Please note the following: The derivation of the CRLB

utilizes the derivative of the likelihood at the ground truth

value of the parameter to be estimated, and the expectation of

the derivative w.r.t. the measurements has to be taken. Thus

the expected values of the second order derivatives can be

simplified, since E[Pi,j − P i,j ] = 0. In case of eq. (10) we

obtain

E

[

∂2lUj

∂ux,j∂ux,j

]

= − 1

σ2
n

N
∑

i=1

(

∂

∂ux,j

P i,j

)2

, (15)

since the expected value of the second part of eq. (10) equals

zero.

IV. SIMULATION RESULTS

Positioning using beacons with known directivity pattern

can be expected to have a lower CRLB than positioning

with omnidirectional radiation patterns, because the known

directivity adds position dependent information. This is indeed

the case as can be seen by the simulation results of Fig. 3.

In Fig. 3 a setup with three beacons in a room of size

3.5 m × 5 m is depicted. The left plot shows the undirected

model with a typical region of increased RMS error on the

interconnection line between the two upper beacons and a

significant error in front of the third beacon. The right plot

shows more dark blue colors than the left plot, which means

that the average RMSE inside the room is reduced by the
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Fig. 3. Root CRLB, see eq. (14), in [m]: Comparison between model with
omnidirectional characteristic (see eq. (1)), left figure; and angular dependent
model with parameters from lab measurements (see eq. (2)), right figure.

introduction of directed beacon models. The black whisker at

the beacons indicates the direction of maximum radiation.

Instead of straight lines of increased errors between beacons

we now find curved regions of increased error. Also isolated

error “hotspots” in the vicinity of the beacons with a sharp

increase of the error compared to adjacent regions can be

observed. Note, that the RMSE and the position of the error

hotspots mainly depend on the direction of the beacons.

A. Experiments with randomized beacon directions

In order to get an impression of the dependence of the

localization error on each beacon’s orientation in a BLE

network, we present experiments with randomly generated

setups.
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Fig. 4. Histogram of average root CRLB values for experiments with a fixed
beacon geometry using different, randomly selected beacon directions for each
experiment.

For the results in Fig. 4 we kept the positions of the

three beacons fixed and drew the orientation of each beacon

uniformly at random. For each configuration we calculated the

root CRLB averaged over 150 positions placed on a regular

grid in the room of size given above. The Fig. 4 displays the

histogram of the average root CRLBs of 500 configurations.

The best setup achieves an RMSE of less than 1.5m while the

worst ones exceed an RMSE of 4m (see Fig. 5). These results

clearly show the potential benefits of integrating direction

information into the beacon network planning process.

By having a close look at the results we could formulate

the following guidelines for the choice of beacon orientation

• Avoiding symmetries in the setups improves results.

Simply pointing all beacons into the center of the room
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Fig. 5. Best, worst and an average result from randomly generated beacon
directions in terms of root CRLB in [m]

will create symmetry effects and regions within the room

with an increased error

• Pointing the beacon’s power maximum towards the region

of interest in a space is beneficial for the overall error.

We should mention that we could verify these effects also in

real setups.

B. Localization experiments

A straightforward ML estimator of the user location works

as follows: For each grid point we evaluate eq. (5) using the

observed beacon RSSI values and the expected signal strength

at the grid point following eq. (7). The grid point with the

highest likelihood is chosen as the smartphone’s position.

5 10 15 20 25 30

1

1.5

2

2.5

R
M

S
E

 [
m

]

 

 

CRLB

Estimator

Variance σ2

n [dB2]

Fig. 6. Comparison between root CRLB and RMSE of grid approach
estimator.

We generated random geometries consisting of four bea-

cons in a room of size 7m × 10m, and calculated the ML

position estimate from simulated observations. The results are

compared with the root CRLB in Fig. 6 for different values of

the variance σ2

n of the log-normal fading. For each variance

value the figure shows the mean value and the Min-Max spread

found in 150 random geometries.

The position estimator reaches the CRLB for small vari-

ances and even exceeds it for larger variance values. This

unexpected result could be traced back to the fact that the

ML estimator is bound to select a point within the room

limiting the error by the size of the room, whereas the CRLB

is ignorant w.r.t. the room boundaries.

V. SENSOR PLACEMENT OPTIMIZATION

Placing beacons in a room with the intention to minimize

the localization error at any given position is a problem

which is similar to planing the network coverage of wireless

communication systems, which is known to be NP-hard [14].

In order to find a solution with manageable computational

effort we implemented the following suboptimal approach,

which is based on an evolutionary optimization algorithm

[15], see Fig. 7. First an initial set of P randomly generated

geometries is created. For each geometry the average CRLB

for a grid of points is calculated as a cost function to evaluate

the geometry. The B geometries with the smallest costs

are kept and directly forwarded to the next generation set.

The remaining geometries are recombined and mutated to

form additional (P − B) geometries, see explanation below.

Together with the B best ones they form the new generation

of geometries, which is again evaluated with respect to the

CRLB.
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Fig. 7. Evolutionary optimization algorithm

The recombination procedure randomly selects two geome-

tries, where the likelihood to be drawn is inversely proportional

to the cost function (“survival of the fittest”). From the

selected geometries we randomly select beacons, subsequently

add random values to their positions and orientation values

(mutation step) and put them into the new geometry until the

amount of desired beacons per room is reached. The random

selection of beacons is proportional to the minimum distance

to beacons in the new geometry, i.e. drawing a beacon which is

close to the position of an already selected beacon is unlikely.

Distance based drawing improves the overall area coverage

and reduces the amount of iterations.
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Fig. 8. Histogram of average root CRLB values of 1000 randomly generated
geometries, and the result of the evolutionary algorithm

In Fig. 8 the histogram of average root CRLB values

obtained from 1000 randomly generated geometries of a 3-

beacon network and a room size of 3.5m× 5m) are depicted.

The red dashed line shows the result of the evolutionary

algorithm after 10 iterations with a population size of P = 20.
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VI. CONCLUSIONS

In this paper we have used Fourier polynomials to describe

angular dependent radio patterns of Bluetooth low energy

beacons. The Cramér-Rao lower bound for position estima-

tion was derived, assuming a log-normal fading model. This

result was then used to calculate the localization errors to be

expected for a given BLE network geometry. Additionally,

an evolutionary algorithm for finding a near-optimal beacon

placement was presented.

∂

∂ux,j

P i,j =
10η (sx,i − ux,j)

dij
2

−

{

m
∑

k=1

akk sin (kαij) − bkk cos (kαij)

}

(sy,i − uy,j)

dij
2

(16)

∂2P i,j

∂ux,j∂ux,j

=
10η

dij
2
−

20η(sx,i − ux,j)
2

dij
4

+

{

m
∑

k=1

akk
2 cos (kαij) + bkk

2 sin (kαij)

}

(sy,i − uy,j)
2

dij
4

+

2

{

m
∑

k=1

akk sin (kαij) + bkk cos (kαij)

}

(sy,i − uy,j)
3

dij
4 (sx,i − ux,j)

−

2

{

m
∑

k=1

akk sin (kαij)− bkk cos (kαij)

}

(sy,i − uy,j)

dij
2 (sx,i − ux,j)

(17)

∂

∂uy,j

P i,j =
10η (sy,i − uy,j)

dij
2

+

{

m
∑

k=1

akk sin (kαij)− bkk cos (kαij)

}

(sx,i − ux,j)

dij
2

(18)

∂2P i,j

∂uy,j∂uy,j

=
10η

dij
2
−

20η(sy,i − uy,j)
2

dij
4

+

{

m
∑

k=1

akk
2 cos (kαij) + bkk

2 sin (kαij)

}

(sx,i − ux,j)
−2dij

4
−

2

{

m
∑

k=1

akk sin (kαij) − bkk cos (kαij)

}

{(sy,i − uy,j) (sx,i − ux,j)}
−1 dij

4
(19)

∂2P i,j

∂uy,j∂ux,j

=
∂2P i,j

∂ux,j∂uy,j

=
20η (sx,i − ux,j) (sy,i − uy,j)

dij
4

+

{

m
∑

k=1

akk
2 cos (kαij) + bkk

2 sin (kαij)

}

(sx,i − ux,j) (sy,i − uy,j)

dij
4

+

2

{

m
∑

k=1

−akk sin (kαij) + bkk cos (kαij)

}

(sy,i − uy,j)
2

dij
4

+

{

m
∑

k=1

akk sin (kαij)− bkk cos (kαij)

}

dij
2

(20)

REFERENCES

[1] D. Gorecky, M. Schmitt, M. Loskyll, and D. Zuhlke, “Human-machine-
interaction in the industry 4.0 era,” 12th IEEE International Conference

on Industrial Informatics (INDIN 2014 ), pp. 289–294, 2014.

[2] A. Asthana, M. Cvavatts, and P. Krzyzanowski, “An Indoor Wireless
Systeim for Personalized Shopping Assistance,” in Workshop on Mobile
Computing Systems and Applications, 1994., 1994, pp. 69–74.

[3] R. Ban, K. Kaji, K. Hiroi, and N. Kawaguchi, “Indoor Positioning
Method Integrating Pedestrian Dead Reckoning with Magnetic Field
and WiFi Fingerprints,” Eight International Conference on Mobile

Computing and Ubiquitous Networking (ICMU 2015), pp. 167–172,
2015.

[4] M. K. Hoang, J. Schmalenstroeer, and R. Haeb-umbach, “Aligning
Training Models with Smartphone Properties in WIFI Fingerprinting
based Indoor Localization,” in IEEE International Conference on Acous-

tic, Speech and Signal Processing (ICASSP 2015), 2015, pp. 1981–1985.

[5] M. K. Hoang, J. Schmalenstroeer, C. Drueke, D. H. T. Vu, and R. Haeb-
Umbach, “A hidden Markov model for indoor user tracking based
on WiFi fingerprinting and step detection,” Proceedings of the 21st

European Signal Processing Conference (EUSIPCO), 2013, pp. 1–5,
2013.

[6] S. Lee, B. Koo, M. Jin, C. Park, M. J. Lee, and S. Kim, “Range-free
indoor positioning system using smartphone with bluetooth capability,”
IEEE/ION Position, Location and Navigation Symposium - PLANS 2014,
pp. 657–662, 2014.

[7] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor
Positioning Techniques and Systems,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 6,
pp. 1067–1080, 2007.

[8] S. He and S.-H. G. Chan, “Wi-Fi Fingerprint-based Indoor Positioning:
Recent Advances and Comparisons,” IEEE Communications Surveys and
Tutorials, 2015.

[9] R. Faragher and R. Harle, “Location Fingerprinting with Bluetooth Low
Energy Beacons,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, 2015.

[10] M. Altini, D. Brunelli, E. Farella, and L. Benini, “Bluetooth indoor
localization with multiple neural networks,” IEEE 5th International

Symposium on Wireless Pervasive Computing 2010, pp. 295–300, 2010.
[11] N. Patwari, A. Hero, M. Perkins, N. Correal, and R. O’Dea, “Relative

location estimation in wireless sensor networks,” IEEE Transactions on

Signal Processing, vol. 51, no. 8, pp. 2137–2148, Aug 2003.
[12] M. Hossain and W. S. Soh, “Cramér-Rao bound analysis of localization

using signal strength difference as location fingerprint,” in Proceedings

- IEEE INFOCOM, no. 1, 2010.
[13] A. D. Angelis and C. Fischione, “Mobile Node Localization via Pareto

Optimization : Algorithm and Fundamental Performance Limitations,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 7, pp.
1288–1303, 2015.

[14] A. Krause, A. Singh, and C. Guestrin, “Near-Optimal Sensor Placements
in Gaussian Processes-Theory, Efficient Algorithms and Empirical Stud-
ies,” The Journal of Machine Learning Research, vol. 9, no. May, pp.
235–284, 2008.
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