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Abstract—This paper presents a statistical method of multi-
channel source separation, called NMF-LDA, that unifies non-
negative matrix factorization (NMF) and latent Dirichlet alloca-
tion (LDA) in a hierarchical Bayesian manner. If the frequency
components of sources are sparsely distributed, the source spec-
trograms can be considered to be disjoint with each other in
most time-frequency bins. Under this assumption, LDA has been
used for clustering time-frequency bins into individual sources
using spatial information. A way to improve LDA-based source
separation is to consider the empirical fact that source spec-
trograms tend to have low-rank structure. To leverage both the
sparseness and low-rankness of source spectrograms, our method
iterates an LDA-step (hard clustering of time-frequency bins) that
gives deficient source spectrograms and an NMF-step (low-rank
matrix approximation) that completes the deficient bins of those
spectrograms. Experimental results showed the proposed method
outperformed conventional methods.

I. INTRODUCTION

Microphone array processing forms the basis of computa-
tional auditory scene analysis that aims to understand indi-
vidual auditory events in a sound mixture. One promising
approach to multi-channel source separation is time-frequency
(TF) clustering [1]–[4]. If the frequency components of each
source are sparsely distributed, as is often the case with har-
monic sounds, the source spectrograms can be considered to
be disjoint with each other in most TF bins, i.e., one of the
sources is dominant at each bin. This assumption, called W-
disjoint orthogonality [5], is reasonable because the additivity
of source spectrograms does not hold exactly and a loud sound
masks softer sounds at each TF bin. Under this assumption,
Otsuka et al. [4] proposed a Bayesian mixture model inspired
by latent Dirichlet allocation (LDA) [6] for clustering TF bins
into sources at the same time as clustering those sources into
different directions. Such unified source separation and local-
ization can circumvent the permutation problem of conven-
tional frequency-domain separation methods such as indepen-
dent component analysis (ICA) [7].

Mainly in the context of single-channel source separation,
nonnegative matrix factorization (NMF) has gained a lot of
attention [8]. It approximates the power spectrogram of an
observed mixture signal as the product of a basis matrix (a set
of basis spectra) and an activation matrix (a set of temporal ac-
tivations). For multi-channel source separation, multi-channel
extensions of NMF (MNMF) were proposed [9], [10]. MNMF
decomposes the complex spectrograms of mixture signals into
basis spectra, temporal activations, and spatial information. To
reduce the sensitivity of MNMF to parameter initialization,
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Fig. 1. The generative story of NMF-LDA. Source spectrograms are generated
from bases and activations. Masks denote which source is dominant in each
TF bin. The masked source spectrograms are given phases according to spatial
correlation matrices and then gathered to yield observed spectrograms.

Kitamura et al. [11] proposed a method that restricts the spatial
correlation matrices to rank-1 matrices. This rank-1 MNMF
can be considered a model unifying NMF and independent
vector analysis (IVA) [12], [13]. Although MNMF can lever-
age the low-rankness of source spectrograms, their sparseness
is not taken into account because the sources in every TF bin
are allowed to be active simultaneously.

In this paper we propose a hierarchical Bayesian model,
called NMF-LDA, that improves multi-channel source sep-
aration by leveraging both the sparseness and low-rankness
of source spectrograms. As illustrated in Fig. 1, the complex
spectrograms of observed multi-channel mixture signals are
generated as follows: the power spectrogram of each source
is stochastically determined as the product of a basis matrix
and an activation matrix and then the phases of the mixture
signals at each TF bin are stochastically determined according
to the spatial correlation matrix of the dominant source at that
bin. Using Gibbs sampling, the basis and activation matrices
are estimated in the framework of NMF at the same time as
a dominant source is identified at each TF bin and the spatial
correlation matrix is estimated in the framework of LDA.

II. RELATED WORK

A standard approach to multi-channel source separation is to
estimate a linear “unmixing” filter that separates the complex
spectra of mixture signals into those of source signals in the
frequency domain [7], [12]–[14]. Mixture signals are usually
modeled as the sum of source signals convolved with the im-
pulse responses of the corresponding source directions. This is
equivalent to an instantaneous mixing process in the frequency
domain, i.e., the complex spectra of mixture signals are the
sum of source spectra multiplied with impulse-response spec-
tra. Using such linearity between mixture and source spectra,
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frequency-domain ICA can estimate a linear unmixing filter at
each frequency bin [7]. The permutation of separated source
spectra, however, is not aligned between different frequency
bins. One possibility to solve the permutation ambiguity is
to focus on the directions and inter-frequency correlations of
sources [14]. IVA [12], [13] is an extension of ICA that can
jointly deal with all frequency components in a vectorial man-
ner. These methods can be used only under a determined
or overdetermined condition that the number of sources is
equal to or less than that of microphones. A promising way
to cope with the underdetermined condition is to focus on the
sparseness of source spectra [15].

Another popular approach to source separation is to perform
nonlinear time-frequency masking based on the sparseness
(disjointness) of source spectra [1]–[4]. If each TF bin is
independently classified into one of sound sources [3], the
permutation ambiguity arises as in ICA. To solve this problem,
Otsuka et al. [4] proposed a statistical method that jointly
clusters each TF bin into different sources and directions. This
method can work well under an underdetermined condition.

III. CONVENTIONAL METHODS

Let us consider that K sources are observed with M micro-
phones. Each TF bin in the complex spectrograms of observed
and source signals is defined as follows:

xtf = [xtf1, · · · , xtfM ]T ∈ CM , (1)

ytf = [ytf1, · · · , ytfK ]T ∈ CK . (2)

Assuming an instantaneous mixing process in the frequency
domain, the observation xtf is represented as

xtf =
∑K
k=1 afkytfk, (3)

where afk is a steering vector of source k at frequency f .

A. Mixture Modeling Approach: Latent Dirichlet Allocation

The LDA-based method [4] simultaneously performs source
separation and localization. Let D be the number of possible
directions (angles), e.g., D = 72 if 360 degrees are discretized
with an interval of 5 degrees. Using the sparseness of source
spectrograms, Eq. (3) is replaced with

xtf =
∑K,D
k,d=1 ztfkskdafdytfk, (4)

where afd ∈ CM is a steering vector of direction d at fre-
quency f . ztfk takes 1 when source k is dominant at frame t
and frequency f and otherwise takes 0. Similarly, skd takes 1
when source k exists in direction d and otherwise takes 0.

A standard way to represent the complex spectrum ytfk of
source k is to use a complex Gaussian distribution as follows:

ytfk | λtfk ∼ NC(ytfk | 0, λtfk), (5)

where λtfk is the power spectrum density of source k. Using
Eq. (4) and Eq. (5), the complex spectrum xtf is found to
follow a mixture of complex Gaussian distributions as follows:

xtf | λ,G,Z,S ∼
∏K,D
k,d=1 NC

(
xtf

∣∣∣ 0, λtfkG−1
fd

)ztfkskd

, (6)
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Fig. 2. Comparison of a mixture model and a factorial model. In the mixture
model, one of sources is stochastically selected at each TF bin. In the factorial
model, all sources are accumulated in a weighed manner at each TF bin.

where G−1
fd = afda

H
fd is a spatial correlation matrix for di-

rection d at frequency f .

B. Factorial Modeling Approach: Multichannel NMF

Multichannel NMF (MNMF) [9] can perform blind source
separation. Unlike the LDA-based method, all sources are as-
sumed to be activated in a weighted manner at every TF bin.
Assuming Eq. (5) as in the LDA-based method and using
Eq. (3), the complex spectrum xtf is found to follow a com-
plex Gaussian distribution as follows:

xtf | λ,G ∼ NC

(
xtf

∣∣∣ 0,∑K
k=1 λtfkG

−1
fk

)
, (7)

where G−1
fk = afka

H
fk is a spatial correlation matrix for

source k at frequency f .
A key idea of MNMF is to decompose the power spectrum

density λtfk of source k by using a low-rank approxima-
tion technique (e.g., NMF and canonical polyadic decomposi-
tion [16]) as follows:

λtfk =
∑L
l=1 ulkwlfhlt, (8)

where wlf is the power of the l-th basis spectrum at frequency
f , hlt is the volume of the l-th basis at frame t, and ulk is a
contribution of the l-th basis to source k such that

∑K
k=1 ulk =

1. Comparing the likelihood of LDA given by Eq. (6) with that
of MNMF Eq. (7), we can see the clear difference between
mixture and factorial modeling approaches (Fig.2).

IV. PROPOSED METHOD

This section explains a hybrid of factorial and mixture mod-
els called NMF-LDA that integrates TF clustering based on
LDA with low-rank approximation of source spectrograms
based on NMF (Fig. 1). Our model was inspired by the LDA-
based method [4] and MNMF [9]. The sparseness of source
spectrograms justifies an assumption that only one of the sources
is activated at each TF bin. This calls for mixture modeling that
stochastically chooses one of sources at each bin. Using the
low-rankness of source spectrograms, the power spectrogram
of each source is approximated by the product of basis spectra
and temporal activations in a way of factorial modeling.

A. Model Formulation

The proposed model consists of LDA and NMF parts that
are integrated in a hierarchical Bayesian manner.
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1) LDA Part: According to the LDA-based model described
in Section III-A, the likelihood function for the observation
xtf is given by Eq. (6). The total likelihood function over all
frames and all frequencies is thus given by

X|λ,G,Z,S ∼
∏T,F,K,D
t,f,k,d=1 NC(xtf |0, λtfkG−1

fd )
ztfkskd . (9)

As in the LDA-based method [4], the latent variables Z and
S are drawn from the following categorical distributions:

ztf | πt ∼ Categorical(ztf | πt), (10)
sk | ϕ ∼ Categorical(sk | ϕ). (11)

For mathematical convenience, conjugate prior distributions
are put on the model parameters π, ϕ, and G as follows:

πt ∼ Dirichlet(πt | aπ01K), (12)

ϕ ∼ Dirichlet(ϕ | aϕ01D), (13)

Gfd ∼ WC(Gfd | ν,G0
fd), (14)

where 1N is a N -dimensional vector with all entries one and
WC is a complex Wishart distribution(see Appendix). Note
that estimation of source indicators Z over all TF bins and
estimation of direction indicators S over K sources correspond
to source separation and localization, respectively.

2) NMF Part: The power spectrum density λtfk in Eq. (9)
is factorized in a similar way to MNMF described in Section
III-B except for two ways. Unlike Eq. (8), λtfk is considered
as a random variable drawn from a gamma distribution with
a factorized scale parameter as follows:

λtfk | Wk,Hk ∼ Gamma

(
λtfk

∣∣∣∣∣ α, α∑L
l=1 wklfhklt

)
, (15)

where E[λtfk|Wk,Hk] =
∑L
l=1 wklfhklt and α is a hyperpa-

rameter controlling how likely λtfk is to be close to an exact
low-rank structure (λtfk →

∑L
l=1 wklfhklt when α → ∞).

Another modification is that the power spectrum density of
each source k is represented with a unique set of basis spec-
tra unlike Eq. (8). These modifications enable our model to
flexibly represent a wide variety of sound spectrograms.

For mathematical convenience, conjugate prior distributions
are put on the model parameters W and H as follows:

wklf ∼ Gamma(wklf | aw0 , bw0 ), (16)

hklt ∼ Gamma(hklt | ah0 , bh0 ), (17)

where a∗0 and b∗0 are hyperparameters.

B. Posterior Inference

Our goal is to find optimal model parameters such that the
posterior probability p(G,Z,S,π,ϕ,λ,W ,H|X) is maxi-
mized. Since the true posterior is analytically intractable, we
use partially-collapsed Gibbs sampling after marginalizing out
π and ϕ. As shown in Fig. 3, LDA and NMF are iterated until
the likelihood converges. G, Z, and S are updated with LDA
and λ, W , and H are updated with NMF. Given the optimal
parameters, frequency-domain source signals can be recovered
using multichannel wiener filtering [9].

Deficient source 

spectrograms

Completed source 

spectrograms

Observed mixture 

spectrograms

LDA

Multi-channel inputs

Time-frequency clustering

Low-rank approximation
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Fig. 3. Overview of the proposed iterative optimization algorithm.

1) Updating LDA Part: G, Z, and S are alternately sam-
pled from conditional posterior distributions given by

Gfd | X,Θ¬Gfd
∼ WC(Gfd | ν′fd,G′

fd), (18)

ztf | X,Θ¬ztf
∼ Categorical(ztf | π′

tf ), (19)

sk | X,Θ¬sk
∼ Categorical(sk | ϕ′

k), (20)

where Θ is a set of all parameters and Θ¬∗ indicates a set of
all parameters excluding ∗. The conditional posterior parame-
ters ν′fd, G′

fd, π′
tf , and ϕ′

k are given by

ν′fd = ν +
∑T,K
t,k=1 ztfkskd, (21)

G′−1
fd = (G0

fd)
−1 +

∑T,K
t,k=1

xtfxtf
H

λtfk
ztfkskd, (22)

π′
tfk = (aπ0 + n¬tftk )

∏D
d=1

{∣∣∣Gfd

λtfk

∣∣∣ exp(−xH
tfGfdxtf

λtfk

)}skd

,

(23)

ϕ′kd = (aϕ0 + c¬kd )
∏T,F
t,f=1

{∣∣∣Gfd

λtfk

∣∣∣ exp(−xH
tfGfdxtf

λtfk

)}ztfk

,

(24)

where n¬tftk indicates the number of TF bins assigned to source
k without a sample at frame t and frequency f , and c¬kd is the
number of sources assigned to direction d without source k

2) Updating NMF Part: λ, W , and H are alternately sam-
pled by using a non-collapsed Gibbs sampler and a Metropolis-
Hastings (MH) algorithm [17]. Since the gamma distribution
(Eq. (15)) is a special case of the generalized inverse Gaussian
(GIG) distribution [18] (see Appendix) and the GIG distribu-
tion is a conjugate prior for the Gaussian distribution (Eq. (9)),
λ can be analytically sampled as follows:

λtfk | X,Θ¬λtfk
∼ GIG(λtfk | γtfk, ρtfk, τtfk), (25)

where γtfk, ρtfk, and τtfk are given by

γtfk = α−Mztfk, ρtfk =
α∑L

l=1 wkflhklt
, (26)

τtfk =
∑D
d=1 xtfGfdxtfztfkskd. (27)

Since the true conditional posterior distributions of W and
H are analytically intractable, the MH algorithm [17] is used
for sampling W and H instead of Gibbs sampling. The key of
the MH algorithm is the design of a proposal distribution that
stochastically generates a candidate of a next sample based on
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a previous sample. If the proposal is close to the true posterior,
the candidate is set to the next sample with a high acceptance
ratio. Otherwise, the previous value is set to the next sample.
In this study, approximated posterior distributions of W and
H are calculated by variational Bayesian (VB) inference and
then used as proposal distributions for MH sampling.

Although the GIG distribution can be a conjugate prior on
the scale parameter of the gamma distribution, neither Eq. (16)
nor Eq. (17) has no direct conjugacy with Eq. (15) because the
sum operation is involved in the scale parameter. The complete
log-likelihood given by Eq. (15), Eq. (16), and Eq. (17) is
thus lower bounded by an auxiliary function L, using Jensen’s
inequality and a first-order Taylor approximation in the same
way as Bayesian NMF [19] as follows:

L = −
∑T,F,K
t,f,k=1 λtfk

∑L
l=1

ψlktf

wkflhklt
− log(ωktf )

−
∑L
l=1

wkflhklt

ωktf
− log

q(wkfl)q(hklt)
p(wkfl)p(hklt)

, (28)

where ϕlktf and ωktf are auxiliary variables. The original log-
likelihood can be recovered by maximizing the lower bound
L with respect to ϕlktf and ωktf as follows:

ψlktf =
wkflhklt∑L
l=1 wkflhklt

, ωktf =
∑L
l=1 wkflhklt. (29)

Since the GIG-gamma conjugacy is recovered in L, the vari-
ational posterior distributions of W and H used as proposal
distributions for MH sampling are obtained as follows:

q(wkfl) = GIG(wkfl | aw0 , ρwkfl, τwkfl), (30)

q(hklt) = GIG(hklt | ah0 , ρhklt, τhklt), (31)

where ρwkfl, τ
w
kfl, ρ

h
klt and τhklt are given by

ρwkfl = bw0 +
∑T
t=1

hklt

ωktf
, τwkfl =

∑T
t=1

ψ2
lktfλtfk

hklt
, (32)

ρhklt = bh0 +
∑F
f=1

wkfl

ωktf
, τhklt =

∑F
f=1

ψ2
lktfλtfk

wkfl
. (33)

V. EVALUATION

This section presents source separation results obtained with
simulated convolutive mixture signals. The experiments were
conducted in underdetermined conditions (the number of mi-
crophones M < the number of sources K) and overdetermined
conditions (M > K). The proposed NMF-LDA was compared
with IVA [12], MNMF [9] and the LDA-based method (simply
written as LDA in this paper) [4] in overdetermined conditions
and with MNMF and LDA in underdetermined conditions
because IVA can not be used in underdetermined conditions.
Although the original model of LDA [4] can estimate the num-
ber of sources, for fair evaluation we conducted experiments
under the condition that the number of sources is fixed. More
specifically, Eq. (15) is replaced with:

p(λtfk) = Gamma(λtfk|1, 1). (34)

A. Experimental Conditions

Figure 4 shows the locations of microphones and sources.
Three sources were convoluted using impulse responses mea-
sured in a room where the reverberation time RT60 was 400

100 �

0�

28 �

80�80�

Mic. 1

Mic. 2

Mic. 3

Mic. 4

Fig. 4. Locations of microphones and sources.

ms. The number of microphones M was 2 or 4; mic. 2 and
mic. 4 (shown in black) were used when M = 2 and all
microphones were used when M = 4. 30 mixtures were used
for evaluation; 10 were mixtures of music signals (including
guitar, bass, vocal, hi-hat, piano sounds), 10 were mixtures of
speech signals, and 10 were mixtures of music and speech
signals. The music and speech signals were selected from
the SiSEC data set [20] and the JNAS phonetically balanced
Japanese utterances [21], respectively. The audio signals were
sampled at 16000 Hz and a short-time Fourier transformation
was carried out with a 512 pt Hamming window and a 256
pt shift size. The steering vectors âfd were measured in an
anechoic room such that D = 72 with 5◦ resolution. Hyper-
parameters were set as follows: ν = M , G0

fd = (âfdâ
H
fd +

0.01 × I)−1, L = 20, aπ0 = aϕ0 = 10, aw0 = bw0 = ah0 = 1,
bh0 = L, α = 10. Signal-to-distortion ratio (SDR) [22] was
used to evaluate separation performances. The larger the SDR,
the better the separation performance.

B. Experimental Results

Figures 5 and 6 show the SDR improvements. In all condi-
tions, NMF-LDA achieved best separation performance of all
compared methods. For speech data, NMF-LDA slightly out-
performed LDA. For music data, although LDA was inferior to
MNMF, NMF-LDA achieved better performance than MNMF.
This indicates that the low-rankness of music spectrograms is
much stronger than that of speech spectrograms.

Tables I and II show the average SDR improvements. The
average SDR improvement obtained by NMF-LDA was at
most 3.3 dB greater than that obtained by LDA. While in
the case of two microphones NMF-LDA archived much better
performance than LDA, in the case of four microphones the
performance difference was small. This indicates that the low-
rankness of source spectrograms effectively helps estimate the
power spectrogram density when a fewer number of micro-
phones are available.

Although steering vectors are required for setting appropri-
ate prior distributions on spatial correlation matrices in NMF-
LDA (Eq. (14)) as in LDA, this is not a problem in practice.
The experimental results showed that NMF-LDA works well
in an unknown environment whose acoustic characteristics are
significantly different from those of an anechoic room.

VI. CONCLUSION

This paper presented a hierarchical Bayesian model of multi-
channel source separation that combines LDA and NMF con-
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Fig. 6. SDR improvements in the case of four microphones.

TABLE I
AVERAGE SDR IMPROVEMENTS IN THE CASE OF TWO MICROPHONES.

Music Speech Music and speech
MNMF 5.7 dB 5.1 dB 6.6 dB

LDA 3.2 dB 6.0 dB 5.7 dB
NMF-LDA 6.5 dB 6.7 dB 7.5 dB

TABLE II
AVERAGE SDR IMPROVEMENTS IN THE CASE OF FOUR MICROPHONES.

Music Speech Music and speech
IVA 5.7 dB 7.8 dB 7.1 dB

MNMF 6.4 dB 9.2 dB 8.8 dB
LDA 6.3 dB 10.0 dB 9.5 dB

NMF-LDA 7.5 dB 10.1 dB 9.5 dB

sidering both the sparseness and low-rankness of source spec-
trograms. A dominant source at each TF bin is identified and
the spatial correlation matrix for each source is estimated in the
framework of LDA. The power spectrogram of each source is
decomposed into basis spectra and temporal activations, which
are estimated in the framework of NMF. Experimental results
showed that the proposed method achieved better source sep-
aration performance than conventional methods.

To estimate the number of sound sources as the same time as
optimizing the number of basis spectra, we plan to formulate
a nonparametric Bayesian extension of NMF-LDA based on
the Dirichlet, gamma, and/or beta processes. Another possible
extension is to allow spatial correlation matrices to smoothly
vary over time for dealing with moving sound sources. In this
case, the NMF part is expected to help because basis power
spectra are scarcely affected by the locations of sound sources.
To track moving sources in real time, we also plan to develop
an efficient algorithm of online Bayesian inference.

APPENDIX

The probability density function of the complex Wishart
distribution and that of the GIG distribution are given by:

WC(G|ν,G0) =
|G|ν−M exp(−tr(G(G0)−1))

|G0|νπM(M−1)/2
∏M−1
m=0 Γ(ν −m)

, (35)

GIG(y|γ, ρ, τ) = exp{(γ − 1) log y − τy − τ/y}
2τγ/2Kγ(2

√
ρτ)

, (36)

where Kγ is a modified Bessel function of the second kind.
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