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Abstract—Glaucoma is an asymptomatic eye disease and one
of the major causes of irreversible blindness worldwide. For
this reason, there have been significant advances in automatic
screening tools for early detection. In this paper, an automatic
glaucoma diagnosis algorithm based on retinal fundus image is
presented. This algorithm uses anatomical characteristics such
as the position of the vessels and the cup within the optic
nerve. Using several color spaces and the Stochastic Watershed
transformation, different characteristics of the optic nerve were
analyzed in order to distinguish between a normal and a
glaucomatous fundus. The proposed algorithm was evaluated
on 53 images (24 normal and 29 glaucomatous images). The
specificity and sensitivity obtained by the proposed algorithm are
0.81 and 0.87 using Luv color space, which means considerable
performance in diagnosis systems.

I. INTRODUCTION

Glaucoma is the second leading cause of blindness in the
world [1]. In the literature, glaucoma is considered as a
“multi factorial optic neuropathy” which affects 66.8 million
people around the globe [2]. Intraocular pressure is usually
an important aspect in glaucoma diagnosis. The increase of
this pressure (IOP) may affect the optic nerve and may cause
nerve damaged that involves loss of the retinal ganglion cells.
Although the raised IOP is an important and modifiable risk
factor for Glaucoma, it is not the only one. This means, there
are people who have high eye pressure for a long time and
the optic nerve is never affected. Glaucoma is also considered
a silent eye-disease because it does not have symptoms until
advance stages are reached. Since, no pain is associated with
high IOP and glaucoma is asymptomatic in the early stages, its
early detection and subsequent treatment is essential to prevent
visual damage. Therefore, automated screening for glaucoma
would be highly beneficial.

The optic disc (OD) is a round area in the back of the eye
where retinal fibers are collected to form the optic nerve. This
can be divided into two zones, a central bright zone called the
cup and a peripheral region called the neuroretinal rim where
the nerve fibers bend into the cup region [3]. As it is shown
in the Fig. 1 .

The change in the optic nerve head in the presence of
glaucoma is characterized by the increase of the cup size.
This factor changes the appearance of the OD, as it is shown
in Fig. 2(b). Typically, glaucoma detection is made by taking

Fig. 1. Main structures of the optic disc region in a color fundus image

into account this deformation or “cupping” effect as well as
the medical history, IOP and visual field loss test.

Since “cupping” effect is a important indicator of glaucoma
progression, several characteristics of the optic disc region can
be estimated using computer screening for early diagnosis.
Characteristics such as cup to disc ratio or CDR that expresses
the proportion of the disc occupies by the cup. It falls in the
range of 0.3 to 0.5 for normal discs and for glaucomatous
discs is higher than 0.5 [4]. Other characteristics are the area
cup to disc ratio or ACDR that compares the optic nerve
area with the cup area and the ISNT rule which determines
a characteristic configuration for disc rim thickness. This rule
is useful in evaluating whether the neuroretinal rim is normal
or pathological. A normal neuroretinal rim tends to have the
inferior part (I) thicker than the superior part (S) and the nasal
part (N) thicker than the temporal part (T) (I >S >N >T) [5].
All these characteristics are quantitative and can help to track
the glaucoma progression and classify images into normal
and pathological eyes. Such characteristics can be obtained
manually or by computer-based systems.

Many approaches have been developed towards the glau-
coma detection in color fundus images, including level-set
methods [6], superpixel classification [7], cup segmentation
using r-bends information or vessel geometry and Hough
transforms [8]. There was also developed a framework called
ARGALI that measures automatically the cup to disc ratio
(CDR).

This work focuses on glaucoma diagnosis using the CDR,
ACDR and ISNT rule. In addition, a method for cup segmen-
tation is proposed. This method analyses different color spaces
and makes use of the Stochastic Watershed transformation.
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(a) (b)

Fig. 2. Difference between the aspect of the optic nerve in retinal fundus
images: (a) Healthy optic nerve and (b) glaucomatous optic nerve.

II. MATERIAL

Two sets of images were used in this work. One of them,
provided by 12 de Octubre Hospital (Madrid), is composed
by 53 images of 768x576 pixels [9]. 30 of these images are
classified as pathological and the remaining 23 as normal. The
second set, DRIVE, is a public dataset composed by 40 images
of 565x584 pixels [10]. In both datasets, the ground truth of
the optic disc and the cup images are provided and obtained
by specialists. Fig. 3

(a) (b) (c)

Fig. 3. Example of images used in the proposed automatic glaucoma diagnosis
algorithm. (a) Original retinal color fundus image, (b) Ground truth of the OD
and (c) Ground truth of the Cup.

III. METHOD

The complete flowchart of the glaucoma diagnosis algorithm
is presented in Fig. 4. Each block will be described below.

Fig. 4. Block diagram of the proposed glaucoma diagnosis algorithm

A. Image resize

Image resize is the first step of the algorithm. Due to the
fact that the images under study belong to different databases,
the image dimension varies. This block resizes the images to a

standardized dimension in order to obtain comparable results.
Images are resized using the length of the horizontal diameter
of the fundus as reference [11]. Bicubic interpolation is used
for resizing; the output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.

B. ROI localization

After image resize, the next step is to crop the image
strategically. In this case, the algorithm crops the input images
taking into account the center of the OD. OD masks were
obtained based on the work presented in [12]. The algorithm
takes about 10 more pixels, from the original image, surround-
ing the OD mask as it is shown in Fig.5 .

Fig. 5. Cropped image in the ROI, taking as reference the center of the optic
disc.

C. Color Space analysis

Different color modes exist in the literature. In particular,
color spaces tested in this work were RGB (Red Green and
Blue components), CMYK (Cyan, Magenta, Yellow, and Key
(black) components), PCA (Principal Component Analysis),
YIQ (Used in NTSC color TV system) and XYZ, Lab and
Luv which were created by the International Commission on
Illumination (CIE).

A first analysis of these color spaces was made in order to
check which one has the best performance in cup segmenta-
tion.

It was found that components with better performance were
component “v” in color space Luv, second component in PCA,
Cyan and Key components in CMYK and “Q” component in
YIQ color space. They are shown in Fig. 6 .

It is possible to see that the cup is usually darker or brighter
than the other part of the image. The proposed algorithm is
basically based on that. Supposing an image as a topographic
surface where the cup can be the lowest or the highest part of
that surface. Quantitative results of the classification and when
these color space components were used for cup segmentation
will be presented in section IV.

(a) (b) (c) (d)

Fig. 6. Different color spaces components used as input to the developed
algorithm. (a) Second PCA component, (b) v in Luv space, (c) Q in YIQ
space and (d) C+K components in CMYK space.
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D. Cup Segmentation

Cup segmentation block is divided in 3 main parts. Vessel
removal, Stochastic Watershed method and the Cup adjustment
block.

1) Vessel removal: Vessel removal is performed using an
inpainting technique [13]. In particular, a simple diffusion-
based algorithm was implemented, which fills vessel spaces
by diffusing the image information from the known region at
pixel level [14]. An example of this is shown in Fig. 7 (c).

For vessel segmentation procedure, a method based on
mathematical morphology and curvature evaluation was used
[15].

2) Stochastic Watershed Segmentation: Watershed trans-
formation [16] is the segmentation technique used in this
work. Watershed transformation was developed for gray-scale
images. This algorithm is a powerful segmentation technique
whenever the minima of the image represent the objects of
interest and the maxima are the separation boundaries between
objects. For that reason, the input image of this transformation
is usually the gradient image.

In mathematical morphology, the gradient of an image is
obtained as the pointwise difference between a unitary dilation
and a unitary erosion. A gradient image example is shown in
Fig. 7 (d).

One problem of this technique is the over-segmentation,
which is caused by the existence of numerous local minima
in the image due to the presence of noise. This problem
is solved establishing the image minima artificially, defining
a marker per minimum. In this work, regionalized random
markers were used. This means, non-uniform random markers
whose distribution is restricted to areas that accomplished a
specific condition. In this work, they can only be located
in low-intensity areas. These intensity regionalized markers
follow a Poisson distribution with variance σ2 [17] . Fig.7 (e).
In this transformation, a given number M of marker-controlled
watershed realizations are performed selecting N pseudo-
random markers in each realization. The idea is to estimate
a probability density function (pdf ) for the countours of the
image, which filter out non-significant border fluctuations. The
probability density function is computed by Parzen window
method [18] as follows:

pdf(x) =
1

M

M∑
i=1

(WSi(x) ∗G(x; s)) (1)

where G(x; s) represents a Gaussian function of variance
σ2 and mean µ(µ = 0), M the sets of N regionalized random
markers and WSi = WS(%)fmrki the ith output watershed
image, being % the gradient image. Fig. 7 (f) illustrates how
the pdf is. Afterwards, it is necessary to perform a last marker-
controlled watershed transformation on the pdf , which defines
the resulting mask by joining all the watershed regions.

Fig. 7 shows different intermediate and final results of the
Stochastic Watershed algorithm.

Fundamentally, this is the neuralgic step in the proposed
algorithm. Therefore, the variable parameters of the watershed

algorithm were carefully analyzed (the variance of the Poisson
function that generates the random markers and the number
of random markers). The variance σ2 was set in 0.0003 up to
0.01, the number of markers were set between the range 10−
15 up to the range 400− 500 and the number of realizations
was set in 5. The random markers are limited by the region of
interest of the image. For that reason, they are not completely
random. This limitation makes them pseudo-random markers.
In order to obtain optimum values, several tests were carried
out. The results of these tests are shown in Section IV .

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 7. Process of the Stochastic Watershed: (a) image region of interest, (b)
Gray-level image (Q component in YIQ color space), (c) vessel removal, (d)
Gradient image, (e) Pseudo-random markers, (f) pdf of image contours, (g)
Watershed regions and (h) Final generated mask.

3) Cup adjustment: The cup adjustment block is basically
implemented to improve the performance in measuring CDR
and ISNT.

Firstly, it is calculated the total area of the mask obtained by
the Stochastic Watershed method, which is based on the pallor
that characterizes the cup. Secondly, it is generated a circle
with the same area of the generated Stochastic Watershed
mask and is placed in the center of the optic disc. With
this adjustment, the cup segmentation takes into account the
geometrical cup position, which is, most of the cases, where
the vessels exit to the retina.

In Fig. 8 cup adjustment result is shown. In this figure
the white and green lines identify the optic disc and cup, re-
spectively (segmentation made by specialists). The yellow line
represents the segmentation using pure Stochastic Watershed
method and the blue line represents the adjustment made to
the segmented cup.

Fig. 8. Image result of the cup adjustment block

E. Glaucoma Diagnosis
The proposed method for cup segmentation is used to

measure characteristics such as CDR, ACDR and ISNT rule,
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which are helpful in the glaucoma diagnosis. Therefore, it is
important to define how these measurements were calculated.

ACDR is the ratio between the cup area and the optic disc
area. In [5], CDR is defined as the proportion of the optic
disc that is occupied by the cup. This proportion is typically
measured as the ratio of the vertical diameter of the cup and
the vertical diameter of the optic disc. Regarding to the ISNT
rule, the vertical and horizontal thickness of the optic nerve
rim are measured. The vertical thickness represents the inferior
part (I) plus the superior part (S) of the neuroretinal rim:
VerDiam = I +S, and the horizontal thickness represents the
temporal part (T) plus the nasal part (N) of the neuoretinal
rim: HorDiam = I + S. If the vertical thickness is higher
than horizontal diameter, the image is classified as “Normal”,
otherwise it is classified as “Glaucomatous”.

Due to the fact that the shape of the OD and the cup is
not completely regular, the proposed algorithm calculates the
CDR computing the diameter of the optic disc and the cup,
as the mean of the two highest vertical diameters.

In order to establish optimum thresholds for glaucoma
diagnosis, 10-fold cross validation was used on 12Octubre
dataset. The obtained threshold for the CDR and the ACDR
were 0.56 and 0.30 respectively.

IV. RESULTS

12Octubre and DRIVE datasets were used to test the per-
formance of the proposed algorithm. Both datasets were used
to check the performance of the proposed cup segmentation
method. On the other hand, given 12Octubre dataset is divided
into normal and glaucomatous eye, but DRIVE is not; only
12Octubre dataset was used to analyze the performance of the
algorithm in glaucoma diagnosis. In this section quantitative
results will be shown for each analysis.

A. Cup Segmentation Results

In this section, the performance comparison between five
color spaces in cup segmentation using the Stochastic Wa-
tershed method is shown: CMYK, YIQ, Luv, Lab and PCA.
Specifically component “C” plus component “K” in CMYK,
component “Q” in YIQ, component “v” in Luv, component
“a” in Lab and second component in PCA color space. This
comparison was made using DRIVE and 12Octubre datasets
and calculating the Jaccard and Dice indexes between the
ground truth masks and the segmentation results. Different
Jaccard and Dice indexes were obtained using as inputs each
aforementioned color components. The aim of this test is to
determine the best gray image that can be used as input of our
method.

This comparison was conducted by running several times
the algorithm with different settings, such as the variance
of the function that generates the pseudo-random markers
and the number of pseudo-random markers in the Stochastic
Watershed method. The optimum values of the variance (σ2)
for each color space are shown in Table I. All these results
were obtained using a minimun 100 and maximum of 130
random markers. As it is shown in Fig. 9 (a), it was found

that increasing or decreasing the number of random markers
the performance of the Stochastic Watershed method decreases
and then, the performance of the algorithm.

(a)

(b)
Fig. 9. Cup segmentation analysis using CMYK color space: (a) Results
for different number of random markers (σ2 = 0.003) and (b) Results for
different variance values (using 100 to 130 pseudo-random markers).

Table I also shows the difference between the performance
obtained by using only the Stochastic Watershed method and
the performance obtained using cup adjustment block. Cup
segmentation results for each color space were obtained using
the same values, shown in Table I, for the variance and
number of random markers (between 100 to 130). These
results are represented by means of the True Positive Factor
(TPF_mean) and the False Positive Factor (FPF_mean). These
measurements represent, in this case, sensitivity and specificity
for each image at pixel level.

From the obtained results in Table I , it is observed that
CMYK, YIQ and Luv color spaces show higher specificity and
sensitivity values in comparison to Lab and PCA color spaces.
This implies higher performance in glaucoma diagnosis.

B. Specificity and Sensitivity in Glaucoma Diagnosis

In Table II , specificity and sensitivity for glaucoma diagno-
sis obtained by different color spaces are shown. These results
were obtained using the cup adjustment block. CDR, ACDR
and ISNT rule are evaluated using the same five color spaces,
as it was shown in Table II.

From these results, it is observed that the best performance
in glaucoma diagnosis is obtained by the Luv color space
using the CDR. However, CMYK and YIQ color spaces show
considerable values of specificity and sensitivity, which means
reliable glaucoma diagnosis results.

V. CONCLUSIONS AND FURTHER WORK

In this paper, an automatic glaucoma diagnosis algorithm
that uses the Stochastic Watershed transformation to segment
the cup from digital color fundus images was proposed. With
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TABLE I
COLOR SPACE ANALYSIS RESULTS SHOWING CUP ADJUSTMENT EFFECTS.

Without Cup adjustment With Cup adjustment
CMYK YIQ Luv Lab PCA CMYK YIQ Luv Lab PCA

σ2 0.003 0.025 0.003 0.035 0.020 0.003 0.025 0.003 0.035 0.020

J_mean 0,5076 0,4867 0,5095 0,5095 0,4898 0,6027 0,6062 0,5991 0,5858 0,5212
D_mean 0,6410 0,6218 0,6418 0,6404 0,6333 0,7339 0,7398 0,7281 0,7187 0,6659

TPF_mean 0,6764 0,6078 0,7140 0,8738 0,6409 0,8503 0,8046 0,8759 0,6931 0,6107
FPF_mean 0,0023 0,0018 0,0033 0,0057 0,0019 0,0030 0,0020 0,0040 0,0012 0,0011

TABLE II
GLAUCOMA GIAGNOSIS USING CDR, ACDR AND ISNT RULE THROUGH CMYK, YIQ, LUV, LAB AND PCA COLOR SPACES

CMYK YIQ Luv Lab PCA
Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

CDR 0,8333 0,7845 0,8438 0,6552 0,8125 0,8707 0,9583 0,6207 0,7292 0,6724
ACDR 0,7396 0,8793 0,7708 0,6724 0,7292 0,9483 0,8438 0,6207 0,6458 0,6724
ISNT 0,6875 0,5517 0,7083 0,5086 0,6771 0,4828 0,7083 0,5259 0,7083 0,4655

this algorithm, a complete performance analysis of five color
spaces: CMYK, YIQ, Luv, lab and PCA was shown. From this
analysis, the use of CMYK, YIQ and Luv color spaces shown
higher specificity and sensitivity results for cup segmentation.
After that, several known characteristics such as CDR, ACDR
and ISNT rule were measured. From the computed CDR
by using Luv color space and the Cup adjustment block, a
specificity of 0.8125 and sensitivity of 0.8707 for glaucoma
diagnosis were obtained.

Future work will focus on other techniques such as dictio-
nary learning, texture analysis and superpixel classification for
glaucoma diagnosis.
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