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Abstract—Nonnegative matrix factorization (NMF) is a widely
used method for audio source separation. Additional constraints
supporting e.g. temporal continuity or sparseness adapt NMF to
the structure of audio signals even further.

In this paper, we propose generalized NMF constraints which
make use of prior information gathered for each component
individually. In general, this information could be obtained
blindly or by a training step. Here we make use of these novel
constraints in an algorithm for informed audio source separation
(ISS). ISS uses source separation to code audio objects by
assisting a source separation step in the decoder with parameters
extracted with knowledge of the sources in the encoder. In [1],
a novel algorithm for ISS was proposed which makes use of
an NMF step in the decoder. We show in experiments that
the generalized constraints enhance the separation quality while
keeping the additionally needed bit rate very low.

I. INTRODUCTION

Additional constraints are a powerful extension to non-
negative matrix factorization (NMF) as they adapt NMF to
specific applications such as audio source separation. In this
field, most prominent constraints enforce either continuity or
sparseness on the NMF matrices [2], [3]. In [4], constraints
were adapted to each NMF component since the components
are often structured differently and should not be constrained
equally. Usually, NMF tries to minimize these constraints.

In this paper, we assume that some prior information exists
which gives us the opportunity to calculate certain reasonable
target values for the constraint. Instead of minimizing the
constraint, we let the constraint on each component converge
to the corresponding target value.

We evaluate this novel constraint family in the field of
informed audio source separation (ISS). ISS uses source
separation in the setting of audio object coding and usually
consists of two stages: The original sources are perfectly
known at the encoder which calculates a compact set of
side-information. This information is transmitted alongside the
mixture of the sources to the decoder which uses the side-
information to estimate the sources by a source separation step.
ISS was initially proposed in [5] and adapted to NMF inspired
algorithms in e.g. [6] and [7]. Refer to [8] for a comparative
study of ISS algorithms.

In [1], a novel ISS algorithm was proposed which makes
use of a semi-blind source separation (SBSS) algorithm using
NMF in the decoder. In this scenario, the constraint target
values are extracted from an NMF model calculated from the

sources directly which are perfectly known at the encoder.
After transmission, the target values are then used to guide
the decoder NMF at run-time.

This paper is structured as follows. In Section II, we
discuss source separation with constrained NMF. We review
the recently proposed NMF-ISS algorithm based on semi-blind
source separation using NMF in Section III. In Section IV, we
introduce novel generalized constraints for NMF and show the
application to NMF-ISS. We present experimental results in
Section V and conclude this paper with Section VI.

II. NMF-BASED SOURCE SEPARATION

A. Overview

In the following, we assume a linear mixture of M sources

X =
M∑
m=1

Sm (1)

where X and Sm denote the complex spectrograms of the
mixture and the mth source in time-frequency (TF) domain.

The source separation algorithm described in the following
is based on the algorithm proposed in [9], [10]. First, the
mixture is separated by NMF into acoustical events also
denoted as components. Second, these components are used
for TF Wiener-like masking to yield the estimated sources.

NMF is used to factorize the magnitude mixture spectro-
gram X = |X| ∈ RF×T+ into I components

xft ≈
I∑
i=1

bfi gti (2)

with frequency basis B ∈ RF×I+ , temporal gain G ∈ RT×I+ ,
spectral index f ∈ [1, F ], time bin t ∈ [1, T ], component index
i ∈ [1, I] and xft one element of matrix X.

Starting with an initialization for the NMF matrices, B0

and G0, NMF uses multiplicative update rules to minimize
the β-Divergence dβ between the left and the right hand
side of Equation (2). This reconstruction cost function can
be extended by constraints enforcing different structures of B
or G such as sparseness or continuity.

Figure 1 shows the magnitude spectrogram X, the spectral
basis B and the temporal gain matrix G for an exemplary
trumpet-tambourine mixture.
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Fig. 1. Mixture spectrogram X, frequency basis B and temporal gain G for
exemplary trumpet-tambourine mixture. The trumpet is modeled by the first
three and the tambourine by the other two components.

For synthesis, Wiener-like TF masking with the complex
mixture spectrogram X is performed to restore phase infor-
mation and finer structures for each component spectrogram.
Finally, a clustering step is needed to group the component
spectrograms to M estimated sources S̃m.

B. Constrained NMF

To adapt NMF further to the application of audio source
separation, additional constraints are very helpful. In [2], two
very popular constraints on the temporal gain matrix G were
proposed: Temporal continuity and sparseness favor either
smoothness or sparseness of the column vectors gi

ctc(G) =
I∑
i=1

1

σ2
i

T∑
t=2

[gti − gt−1,i]2 =
∑
i

ctc(gi) (3)

cs(G) =

I∑
i=1

T∑
t=1

gti
σi

=
∑
i

cs(gi) (4)

with σi =
√

1
T

∑
t g

2
ti estimating the variance of the ith col-

umn vector gi of G. These constraints describe either typical
behaviour of harmonic or percussive components respectively.

In the following derivations, we assume arbitrary constraints
c(G) on the temporal gain G with the property that the
constraint can be calculated componentwise

c(G) =
∑
i

c(gi) . (5)

Please note that the following derivations and our proposed
method (cf. Section IV) are also applicable to constraints on B
as long as they can be evaluated on each component separately
as shown in Equation (5) for G. However, we only consider
constraints on G for conciseness in this paper.

Usually, NMF constraints are weighted with a factor α ≥ 0
and added to the β-Divergence dβ taking the NMF reconstruc-
tion error into account thus yielding a combined cost function

cc(B,G) = dβ(X,B,G) + α c(G) . (6)

In the following, we briefly review the derivation of the
multiplicative update rules for calculating the NMF matrices
B and G. The gradients of the combined NMF cost function

given in Equation (6) with respect to B and G can be ex-
pressed as ∇Bcc(B,G) = ∇+

Bcc(B,G)−∇−Bcc(B,G) with
the gradient terms ∇+

Bcc(B,G) and ∇−Bcc(B,G) element-
wise positive. ∇Gcc(B,G) and the gradients of dβ and c(G)
can be expressed equivalently. With these expressions, the
multiplicative update rules for constrained NMF yield

bfi ← bfi

[
∇−Bdβ(X,B,G)

]
fi[

∇+
Bdβ(X,B,G)

]
fi

(7)

gti ← gti

[
∇−Gdβ(X,B,G)

]
ti

+ α
[
∇−Gc(G)

]
ti[

∇+
Gdβ(X,B,G)

]
ti

+ α
[
∇+

Gc(G)
]
ti

(8)

For constraints on B, the corresponding positive and negative
gradient terms are weighted and added to the denominator
and enumerator of the update rule in Equation (7). The
gradient terms for dβ are given e.g. in [10] and for temporal
continuity and sparseness constrains in [2]. Note that for α = 0
unconstrained NMF is performed.

C. Component-adaptive constraints for NMF

Not all constraints are suitable for all components in gen-
eral. For example, temporal continuity favors components
modeling harmonic notes which are more often continuous
in time than percussive ones.

To cope with differently structured components at the same
time, component-adaptive constraints were introduced in [4].
The main principle is to amplify the effect of the constraint c
for components with a low value of c(gi) which means that the
constraint is already favored by these components. Therefore,
the gradient of the component-adaptive constraint c̃ is set to

[∇Gc̃(G)]s,j = [∇Gc(G)]s,j/c(gj) . (9)

The corresponding constraint term c̃ can be derived as

c̃(G) =
∑
i

ln (c(gi)) . (10)

III. NMF-BASED INFORMED SOURCE SEPARATION

NMF-based informed source separation (NMF-ISS) was
proposed recently in [1]. The general idea is to use a semi-
blind source separation (SBSS) algorithm in the decoder to
separate the sources out of their mixture. NMF, which is
used for SBSS, is assisted by side-information extracted in
the encoder with knowledge of the sources.

A. Encoder

Fig. 2a shows the block diagram of the NMF-ISS encoder
as proposed in [1]. With knowledge of the sources, the encoder
first calculates an interference-free NMF model of each source.
Instead of transmitting this model directly, we use it to steer
the NMF-based SBSS algorithm in the decoder: Given the
NMF source model, the encoder calculates an initialization
for the decoder NMF as well as a residual NMF model
after running the decoder. In this paper, an additional step is
introduced: Using the source NMF model, constraint values for
each component are calculated which guide the decoder NMF
at run-time. This procedure is explained in detail in Section IV.
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(a) Encoder. The NMF source model is used for calculation of the decoder
NMF initialization B0, G0 (in the “Threshold and Coding” block).
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(b) Decoder. After decoding and dequantization, the initial NMF model and
the constraint vector are used to initialize and guide the decoder NMF. The
resulting NMF model is finally used for synthesis of the estimated sources.

Fig. 2. Block diagram of NMF-ISS encoder and decoder in time-frequency
domain without residual transmission. The mixture spectrogram X is assumed
to be perfectly known at both encoder and decoder.

Given the source spectrograms Sm and a number of NMF
components I , the NMF source model is calculated as follows:

1) Estimate number of components per source with NMF
with automatic relevance determination (ARD) [11]

2) Evaluate NMF1 on each source Sm separately.
3) Concatenate the resulting NMF matrices in the compo-

nent dimension to yield the NMF source model Bsrc,
Gsrc.

The initial NMF model for the decoder NMF is cal-
culated by simple thresholding (“Threshold” block in Fig-
ure 2a): In the following, the thresholding operation to
yield B0 is shown. The calculation of G0 is done equiv-
alently. First, the source basis matrix is expressed in dB
with b′src,fi = 10 log10(b2src,fi/maxf,i b

2
src,fi). The initial basis

matrix B0 is then obtained by thresholding with threshold
τB0 as b0,fi = 1 if b′src,fi > τB0 and b0,fi = 0 otherwise.
The initial gain matrix G0 is calculated with threshold τG0

.
The binary initial NMF model matrices are then run-length
encoded with subsequent arithmetic encoding of the run-
lengths [1], [12].

After running the decoder, the NMF source model is again
used for determining a residual NMF model to enhance the
separation quality further. In this paper, this step is left out for
conciseness.

B. Decoder

The NMF-ISS decoder, depicted in Figure 2b, uses a
semi-blind source separation (SBSS) algorithm based on the
algorithm explained in Section II. After decoding and dequan-
tization, the initial NMF model and the target vector is passed
to the SBSS algorithm and used there for initialization of the
NMF (refer to Section II).

1Nonnegative tensor factorization (NTF) could be used as well to describe
the source spectrograms jointly. Components which describe multiple sources
could deteriorate the decoder NMF when using NTF.

Given the number of components I , the performance of the
SBSS algorithm strongly depends on the NMF parameter β
which alters the reconstruction cost function dβ and α which
weights the constraints as well as the choice of initial NMF
matrices B0, G0. The NMF-ISS encoder consists of a full
decoder, runs it with different choices for β, α and τB0

,τG0

and chooses the parameter combination which results in the
best SBSS performance.

IV. GENERALIZED NMF CONSTRAINTS

Here, we introduce a modification to constrained NMF:
Instead of minimizing the constraint, thus driving the con-
straint towards zero, we propose to steer it towards a certain
target value instead. We give mathematical formulations in
Sections IV-A and IV-B and show in Section IV-C how to
obtain the target values in an ISS setting.

A. Constraint Formulation

We propose to steer the constraint c(gi) evaluated on each
component to a certain target value ti stored in a vector t ∈ RI

c̄p(G) =
I∑
i=1

|c(gi)− ti|
p

=
∑
i

c̄p(gi) . (11)

The difference between the constraint c(gi) and the target
value ti is normalized depending on p > 0. For p = 1
and t = 0, Equation (11) becomes equal to Equation (5)
if c(gi) ≥ 0 for all i. Therefore, we call the novel con-
straint “generalized”. Note that Equation (11) generalizes
all constraints fulfilling the componentwise requirement (5).
Therefore it is also possible to generalize the component-
adaptive constraint c̃ described in Section II-C by replacing
c(gi) with c̃(gi) in Equation (11).

B. Gradient Terms

In the following, we derive the gradient terms of c̄p needed
for the multiplicative NMF update rules given in Equation (8).

For p > 0, the gradient with respect to G becomes

[∇c̄p(G)]s,j = p · |c(gj)− tj |p−1

· sgn(c(gj)− tj) · [∇c(G)]sj (12)

with sgn(x) denoting the sign function. Due to the chain rule,
the gradient is depending on the gradient of the evaluated
constraint, ∇Gc(G).

In the following, we give the positive and negative gradient
terms of the proposed constraint c̄p(G) for p = 1 and p = 2.

For p = 1, the resulting gradient terms can be interpreted
directly[

∇+c̄1(G)
]
sj

=

{
[∇+c(G)]sj if c(gj) > tj

[∇−c(G)]sj otherwise.[
∇−c̄1(G)

]
sj

=

{
[∇−c(G)]sj if c(gj) > tj

[∇+c(G)]sj otherwise.
(13)

If the value of c(gi) exceeds the target ti, the constraint is
minimized (by using the original positive and negative gradient
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Fig. 3. Temporal continuity cost function ctc(g5) of the 5th NMF component
calculated at NMF run-time with different constraint configurations for the
exemplary trumpet-tambourine mixture.

terms). In the other case, the gradient terms are swapped to
maximize the constraint until the target value ti is exceeded.

For p = 2, the following gradient terms result:[
∇+c̄2(G)

]
sj

= 2
{
c(gj)

[
∇+c(G)

]
sj

+ tj
[
∇−c(G)

]
sj

}
[
∇−c̄2(G)

]
sj

= 2
{
c(gj)

[
∇−c(G)

]
sj

+ tj
[
∇+c(G)

]
sj

}
.

(14)

To constrain NMF with the generalized constraint results
in replacing the gradient terms of c(G) in the multiplicative
update rules (8) with the terms of c̄p(G) given in Equation (13)
and (14).

C. Application to NMF-based Informed Source Separation

In the context of NMF-based informed source separation,
the calculation of the target values t is straightforward by
using the source NMF model. In the NMF-ISS encoder, the
constraint value for the ith column of the source gain matrix
Gsrc is calculated (“Constraint calculation” in Figure 2a) as

tsrc,i = c(gsrc,i) . (15)

To indicate the influence of the sources, we denote the target
vector as tsrc. To transmit the target values tsrc to the decoder,
each value is scalar quantized and the resulting symbols are
bit encoded by adaptive arithmetic encoding [12]. Note that
the additional bit rate is rather small because only I scalar
values have to be transmitted.

D. Example

Figure 3 illustrates the impact of the generalized NMF con-
straints used in the NMF-ISS decoder NMF for the exemplary
mixture shown in Figure 1. We evaluated the temporal con-
tinuity (TC) constraint in Equation (3) on the 5th component
modeling parts of the percussive tambourine sound. The TC
function ctc(g5) is plotted over 100 NMF iterations. Although
TC is usually not suitable to model percussive components,
we use it here to show that the proposed generalized TC
constraint prevents the unwanted behaviour of the standard
TC constraint: The target value t5 is insignificantly higher
than ctc(g5) calculated while running unconstrained NMF

(“NMF”). NMF with TC constraint (“NMF TC”) damps ctc
unnecessarily whereas the proposed generalized TC constraint
(NMF “G-TC” with p = 2) preserves the original ctc value as
it converges to t5.

The separation quality (measured with signal-to-distortion
ratio, SDR, refer to Section V-A) is slightly increased by
0.2 dB when enabling TC compared to unconstrained NMF for
the exemplary mixture. NMF with the proposed generalized
constraints increases SDR significantly by around 2 dB2.

V. EXPERIMENTS

A. Setup

For evaluation of the proposed method, NMF-ISS is per-
formed on five monaural mixtures sampled at 44 100 Hz taken
from the QUASI database3. The mixtures consist of 3 to 6
sources (e.g. vocals, guitar, drums, effects) and are about 20 s
long. As quality measure, the signal-to-distortion ratio (SDR)
is calculated using the “BSS Eval” toolbox [13]. The mean
SDR is calculated over all sources per mixture in reference
to the performance of an oracle estimator [14] which yields
an upper bound for separation with Wiener-like filtering. The
resulting measure is denoted as δSDR and given for bit rate
R which is normalized per source.

Regarding the STFT, we chose a window size of 93 ms with
50 % overlap. Additionally, we filtered the spectral dimension
of all spectrograms with a Mel-filterbank to speed up the
following computation steps and decrease the parameter bit
rate. We used F = 400 Mel-filters.

The encoder is tested with different numbers of com-
ponents I per source I/M ∈ {2, 3, 4, 5, 10, 15, 20, 30} with
M denoting the number of sources. All (R, δSDR) points
were optimized per mixture and I/M independently and then
smoothed using the locally weighted scatter plot smoothing
(LOESS) method to obtain rate/quality curves.

The encoder estimates optimal SBSS parameters at run-
time by testing the SBSS algorithm with combinations of
the following parameters: Regarding NMF, the β-Divergence
parameter and constraint weights are chosen as β ∈ {0, 1, 2}
and α ∈ {0} ∪

{
10−3, 10−2.5 . . . 103

}
. The thresholds for ob-

taining the initial NMF model B0, G0 are either set to
τB0

, τG0
∈ {−15,−30,−60}dB or determined component-

wise as
∑
f bsrc,fi/F or

∑
t gsrc,ti/T . The target values tsrc,i

are coded with 8 bit.

B. Comparison to standard constraints

First, we compare the generalized constraints to standard
constraints and evaluate the impact of the normalization factor
p used in Equation (11). Therefore, we conducted NMF-
ISS without residual transmission. The decoder NMF was
either evaluated with temporal continuity or sparseness con-
straints (“NMF TC” or “NMF S”, cf. Equations (3) and (4))
and compared to unconstrained NMF (“NMF”). Additionally,
NMF was performed with the proposed generalized temporal

2Note that we chose the corresponding constraint weights for NMF TC and
NMF G-TC maximizing the SDR.

3http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/

2016 24th European Signal Processing Conference (EUSIPCO)

600



R [kbps/source]
10

-1
10

0

δ
S
D
R

[d
B
]

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

NMF
NMF TC
NMF G-TC,p = 2
NMF G-TC,p = 1

(a) Temporal continuity

R [kbps/source]
10

-1
10

0

δ
S
D
R

[d
B
]

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

NMF
NMF S
NMF G-S,p = 2
NMF G-S,p = 1

(b) Sparseness

R [kbps/source]
10

-1
10

0

δ
S
D
R

[d
B
]

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

NMF TC
NMF G-TC,p = 2
NMF TCi
NMF G-TCi,p = 2

(c) Component-adaptive temporal continuity

Fig. 4. Separation quality in δSDR. Comparison to standard constraints and to component-adaptive temporal continuity constraint as well as influence of
parameter p for proposed generalized constraints.

continuity (“NMF G-TC”) and sparseness constraints (“NMF
G-S”) with normalization factor p ∈ {1, 2} (cf. Equation (11)).

Figure 4a shows the δSDR results for TC: The generalized
TC yields worse results than TC for p = 1; the performance
is similar to unconstrained NMF. For mid-range and high bit
rates, G-TC outperforms TC with p = 2.

Regarding sparseness, the generalized constraint gives better
results than the standard constraint for p = 1 and p = 2
as depicted in Figure 4b. In the case of p = 2, a gain of
around 1 dB for mid-range bit rates can be observed. In this
configuration, the generalized TC constraint for p = 2 is
outperformed by generalized S constraint with p = 2 for all
bit rates.

C. Generalized component-adaptive constraints

In this section, we compare the proposed generalized con-
straints to component-adaptive constraints (cf. Section II-C)
and also apply the generalization to these constraints.

Figure 4c shows the corresponding results for the tempo-
ral continuity constraint. The component-adaptive constraint
(“TCi”) gives similar results compared to the standard TC
constraint (“TC”). The proposed generalized constraint on TC
(“G-TC”) outperforms TCi and yields an δSDR increase of
about 0.5 dB for mid- and high-range bit rates. The general-
ization of TCi (“G-TCi”) gives even better results than G-TC
for low and mid-range bit-rates (increase of about 0.5 dB).

We also conducted experiments for the sparseness (S)
constraint which confirm the results obtained for TC: The gen-
eralized S constraint gives better results than the component-
adaptive S constraint. The quality difference is similar to the
difference between “NMF S” and “NMF G-S” for p = 2 in
Figure 4b. Generalization of the component-wise sparseness
constraint does not increase separation quality.

VI. CONCLUSION

In this paper, we proposed to steer constraints for NMF to
certain target values componentwise. We derived the corre-
sponding terms necessary to modify the NMF update rules
and evaluated these generalized constraints in an informed
source separation setup. We showed in experiments, that the
generalized constraints outperform a set of existing NMF
constraints.

Future work could include evaluating the novel constraints
in a more semi-blind or blind setup by estimating the target
values at run-time.
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