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Abstract—The completely automated public Turing test to
tell computers and humans apart (CAPTCHA) represents an
established method to prevent automated abuse of web services.
Most websites provide an audio CAPTCHA—in addition to
a conventional visual scheme—to facilitate access for a wider
range of users. These audio CAPTCHAs are generally based on
distorted speech, rendering the task difficult for untrained or
non-native listeners, while still being vulnerable against attacks
that make use of automatic speech recognition techniques.

In this work, we propose a novel and universally usable type
of audio CAPTCHA that is solely based on the classification of
acoustic sound events. We show that the proposed CAPTCHA
leads to satisfactorily high human success rates, while being
robust against recently proposed attacks, more than currently
available speech-based CAPTCHAs.

I. INTRODUCTION

A widely used approach to protect computer systems and

web services from automated abuse is an interactive test that

can distinguish between human users and computer programs.

These tests are usually referred to as CAPTCHAs and they

should represent a task that is easy for human users but

difficult for computer algorithms. CAPTCHAs have now been

employed for more than one decade [1]–[4] where research

and development in this field has mainly focused on the design

of visual tasks, e.g., the recognition of distorted characters or

the classification of images.

In order to support visually impaired users and to enable the

usage of devices with limited display capabilities, an acoustic

verification scheme, i.e., an audio CAPTCHA, is typically

provided in addition to the visual scheme. The majority

of currently available audio CAPTCHAs is based on non-

continuously spoken words, often limited to a small vocabulary

(e.g., digits), that have been artificially distorted to harden the

task for automatic speech recognition (ASR) systems.

A weakness of most available audio CAPTCHAs is that they

exhibit a relatively disappointing trade-off between human

usability and robustness against automated attacks [5]. This

is due to the fact that ASR systems can achieve a very high

performance—even under severe noise conditions—when the

underlying vocabulary is small, whereas speech intelligibility

for humans decreases when the signal-to-noise ratio is low.

Thus, extending the vocabulary of the CAPTCHA can be

beneficial to impede automated attacks. However, using large-

vocabulary distorted speech not only creates a more challeng-

ing task for ASR but may also overtax untrained listeners or

non-native speakers.

To overcome these problems, we propose an audio

CAPTCHA that is based on the detection and classification

of non-speech sounds, i.e., acoustic events. The advantage

of using non-speech sounds is that it enables us to create a

vast number of different acoustic scenarios that exhibit highly

diverse spectro-temporal characteristics, rendering machine-

driven attacks more difficult. Another benefit of using non-

speech sounds is that the CAPTCHA becomes independent of

language skills1, making the CAPTCHA suitable for a broader

group of users.

II. RELATED WORK

Several audio CAPTCHAs have been proposed that are

based on recognizing a sequence of distorted digits, utiliz-

ing linear or non-linear signal distortions. For example, the

authors of [7] analyze 18 different types of signal distortions

(e.g., additive white noise, echo, and signal bursts) and show

that most of them can be used to increase the performance

gap between humans and ASR systems. In [8], the authors

investigate the differences between mixing-based and deletion-

based methods, and find that the latter is more suitable for

controlling the degree of difficulty. However, recent research

has shown that especially digit-based audio CAPTCHAs can

be easily broken at critically high success rates [5], [9]–[11]

between 50 %–90 %.

In [12], the authors propose an audio CAPTCHA that uses

an extended vocabulary. The advantage of this CAPTCHA is

that it does not require conventional kinds of signal distortions

in order to be secure, as it includes additional non-sense speech

sounds that are highly confusing for ASR but not so much for

human listeners.

Lazer et al. [13] design a CAPTCHA that is based on a

series of environmental sounds that must be identified in real-

time by the user, each time they occur in the signal. The

CAPTCHA was found to be very usable, as the human success

rate was measured to be above 90 %. However, the CAPTCHA

1Note that the CAPTCHA instructions could be automatically translated
into the user’s preferred language, e.g., using Google translate [6].
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TABLE I
OVERVIEW OF THE SYNTHESIS DATABASE, SHOWING THE SCENE AND

EVENT CATEGORIES, THE SOURCE OF ORIGIN (CORPUS), AND THE

NUMBER OF AVAILABLE EXAMPLES (EXAMPLES).

Type Category Corpus Examples

Scene Office IEEE 2
Scene Park/Nature IEEE 2
Scene Restaurant/Cafe IEEE 2
Scene Street/Bus/Car IEEE 2
Scene Shop/Supermarket IEEE 1

Event Alarm/Phonering IEEE 11
Event Barking dog Two!Ears 20
Event Crying baby Two!Ears 20
Event Cough/Clear throat IEEE 45
Event Doorclose/Doorknock IEEE 33
Event Laughter/Giggle IEEE 34
Event Dropping keys/coins IEEE/freesound 14

security was not analyzed in this work but only discussed

theoretically.

III. CREATING CAPTCHAS

We adopt the general idea of [13] and propose a non-speech

audio CAPTCHA, posing the task of detecting and classifying

a series of isolated acoustic events, embedded in a continuous

environmental scene.

In contrast to [13], the proposed CAPTCHA does not

require real-time interaction during playback and allows an

unlimited number of replays. This has the advantage that

the requirements for the user back-end are lower2, which

increases the compatibility of the proposed CAPTCHA for

various devices and browsers. Furthermore, we assume that

prohibiting replay might lead to increased user frustration

upon mistakes, especially when dealing with relatively long

CAPTCHA signals (e.g., durations around 45 s as in [13]).

Our proposed CAPTCHA is designed such that the average

signal duration is relatively short at approximately 8.5 s , to

create a task that is comparatively time-saving and competitive

to most commercially available audio CAPTCHAs.

A. Synthesis Database

For synthesizing audio CAPTCHAs, we start by creating a

database that is manually compiled from several corpora, i.e.,

the dataset of the IEEE AASP Challenge [14], the Two!Ears

sound database [15] and a small number of sounds taken

from freesound.org [16], [17]. The database is designed such

that ambiguities between individual events are reduced or

even avoided. This means that similar perceived sounds are

grouped into the same category (e.g., clear throat and cough

are grouped into one category). Table I provides an overview

of the synthesis database, showing the scenes and events that

are used for our approach. Note that the synthesis database

could be arbitrarily adjusted, e.g., to make the CAPTCHA

more robust against machine-learning-based attacks.

2Real-time interaction generally requires certain web technologies such as
JavaScript, which are not necessarily enabled or available.

TABLE II
EVENT GUESSING PROBABILITIES FOR NE = 7.

KE 1 2 3 4 5 6 7

PE(NE ,KE) 1

7

1

21

1

35

1

35

1

21

1

7
1

B. Composition and Mixing

Each CAPTCHA consists of a sequence of events that are

mixed with an environmental background scene. The individ-

ual events and scenes are sampled uniformly at random from

the synthesis database by taking their individual frequency of

occurrence into account. All events are clearly separated in

time, using random offsets that are chosen from the interval

[0.5, 1.0] s. The events are mixed with the environmental

background scene at a predefined event-to-scene ratio (ESR),

which is defined as the ratio of the power of the respective

event signal and the power of the corresponding part of the

scene signal3.

The number of events in each CAPTCHA is varied between

3 and 4 to achieve an acceptable low probability for simply

guessing the CAPTCHA solution—assuming that there is no

automated CAPTCHA solver available—while keeping the

task as easy as possible for humans. The probability for guess-

ing the events of a given CAPTCHA without prior knowledge

is defined by the reciprocal of the binomial coefficient

PE(NE ,KE) =

(

NE

KE

)

−1

=

(

NE !

KE ! (NE −KE)!

)

−1

, (1)

where NE is the number of event categories and KE is the

number of distinct events, present in the CAPTCHA.

Table II lists the event guessing probabilities for NE = 7,

when the number of events KE is varied between 1 and 7.

Thus, for our proposed design (i.e., when NE = 7 and

KE ∈ {3, 4}), assuming that the attacker knows NE and KE ,

the average probability for guessing the set of distinct events

in the CAPTCHA is

PE(7, 3) = PE(7, 4) =
1

35
≈ 0.03 , (2)

which is below the often theoretically considered maximum

allowed success rate of 5 % for an attack (e.g., [4], [9]).

IV. EVALUATION

The proposed CAPTCHA is evaluated with respect to

security and usability aspects. We assess the security of the

CAPTCHA, i.e., the robustness against bots, by means of a

simulated attack, using common methods that were recently

applied for breaking several commercially available audio

CAPTCHAs (e.g., [9]–[11]). Furthermore, we assess the hu-

man usability by conducting a large-scale listening experiment

using crowdsourcing tests, which have proven to represent a

suitable alternative to laboratory-based tests when dealing with

the evaluation of audio signals [18], [19].

3The definition is similar to that of the signal-to-noise ratio (SNR).
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Fig. 1. Example of the proposed audio CAPTCHA showing the waveform
(top) and the short-time RMS power (bottom). The segment boundaries of the
events are depicted by vertical red lines (dashed). The short-time RMS curve
and its smoothed version are shown by a blue semi-dashed and green solid
line, respectively. The power threshold γ is given by a horizontal red line.
The example contains the event sequence (“Dog”, “Alert”, “Baby”) mixed at
15 dB ESR with the environmental scene “Restaurant”.

A. Security

In order to assess the CAPTCHA security, we simulate an

attack by using an automated CAPTCHA solver that estimates

the respective scene and event labels, based on the audio

signal. For this evaluation, we consider an advanced attacker

that has fundamental knowledge about signal processing and

machine-learning and the resources to create a labeled training

data set, comprising a sufficiently large sample size. The

CAPTCHA solver is based on a two-stage approach that was—

in a similar setting—successfully applied to break a wide range

of commercially available audio CAPTCHAs [9]–[11].

Figure 2 shows the block diagram of the implemented

CAPTCHA solver. The CAPTCHA signal x(t) is first divided

into disjoint signal segments si(t) that contain the individ-

ual acoustic events, where i denotes the i-th event in the

CAPTCHA. The segmentation is based on a smoothed version

of the short-time root mean square (RMS) power of x(t)

p̃(k) =
1

2M + 1

M
∑

m=−M

p(k −m) (3)

where k represents the frame index and M is the width of the

moving average filter. The RMS power is given by

p(k) = 10 log10

√

√

√

√

1

L

L−1
∑

l=0

x2(lR+ L) , (4)

with L,R representing the frame length and the frame shift,

respectively.

A segment si(t) is then defined by those positions of p̃(k)
that exceed a certain power threshold γ. Such a threshold

can either be defined manually by inspecting a set of audio

x(t) si(t) si

x

ΘS

ΘE

LE

LS

EventEvent

SceneFeature

Feature
segment. extraction

extraction class.

class.

Fig. 2. Block diagram of the CAPTCHA solver.

signals or automatically, by using some heuristic. For the given

CAPTCHAs, we found that using the mean value of p̃(k)
yields stable segmentation results. Furthermore, the parameter

M has been optimized by maximizing the segmentation accu-

racy (cf. Eq. 7) on the training set. The segmentation process

is visualized by Fig. 1.

After segmentation, a feature vector si is computed for each

event signal. In addition, a global feature vector x is computed

for the entire signal x(t) to represent the environmental scene.

We compare the performance of two different feature types,

namely temporally averaged Mel frequency Cepstral coef-

ficients (MFCCs) and Cepstral modulation ratio regression

(CMRARE) parameters, where the latter has the advantage

of being independent of the long-term signal power, which is

an important property for scene and event classification [20].

For MFCC features, we compute the first 13 static coefficients

using a window length of 25 ms and a frame shift of 10 ms.

For computing the CMRARE features we follow the approach

in [20]. Using a polynomial order of 3 and concatenating the

regression coefficients of the first 3 modulation bands then

results in a 12-dimensional vector for the CMRARE features.

Both feature vectors, i.e., si and x, are then classified by

means of a linear discriminant analysis using an individual

model Θ, to estimate the set of events LE and scenes LS.

All experiments are conducted under matched conditions,

i.e., using the same event-to-scene ratios for training and

classification. Furthermore, the training is based on ideally

segmented events, using the oracle information of the segment

boundaries4.

B. Usability

We assess the human usability via crowdsourcing tests at

CrowdFlower [21]. The test participants5 were asked to listen

to the audio CAPTCHAs and to select those events and scenes

that they had perceived. Figure 3 depicts the test interface as

it was used for solving a single audio CAPTCHA. Each test

participant provided a response for 10 audio CAPTCHAs and

the overall number of participants was 800.

C. Metrics

For our evaluation, we consider the classification perfor-

mance for events and scenes individually. It is important to

note that the event classification performance does not depend

4This information would be very expensive to obtain for a real attacker.
5Referred to as contributors on CrowdFlower.
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Fig. 3. Test interface of the listening experiment.

on the order or the frequency of individual events, as it would

be the case for most conventional audio CAPTCHA that are

based on word sequences.

a) Event classification accuracy: The event classification

accuracy is given by

AE = 1−max (|TE \ EE|, |EE \ TE|) , (5)

where TE, EE are the sets of true and estimated events,

respectively. | · | denotes the set cardinality and \ is the set

difference. Note that the max(·) operation is performed, as it

is not possible to distinguish between substitution errors or the

simultaneous occurrence of the same number of deletion and

an insertion errors.

b) Scene classification accuracy: The scene classifica-

tion accuracy is simply computed by comparing the estimated

scene ES with the true scene TS
6

AS =

{

1 if TS = ES ,

0 otherwise.
(6)

c) Event segmentation accuracy: We compute the seg-

mentation accuracy by comparing the number of estimated

segments N̂E with the true number of segments NE

AΛE
=

N̂E

NE

. (7)

V. RESULTS

We start by presenting the results of the security analysis.

Table III shows the classification performance for a vary-

ing number of training examples, where we can see that

the classifier achieves a very high accuracy on the scenes

(≥ 98%), even when using a relatively small number of

training examples. The event classification accuracy increases

about linearly between 50 and 800 training examples, where

the maximum is given by 36.10 %.

Table IV shows the performance of the segmentation stage.

The results indicate that the segmentation performance de-

creases about linearly with decreasing ESR.

A comparison between different features and ESR condi-

tions is given by Tab. V. The results show that the MFCC

features lead to higher scene classification accuracies as com-

pared to the CMRARE features, where the latter perform better

6There is only one choice for each scene, by what deletion and insertion
errors can not occur.

TABLE III
AVERAGE CLASSIFICATION ACCURACY (IN PERCENT) FOR A VARYING

NUMBER OF TRAINING EXAMPLES, COMPUTED USING A FIXED TEST SET

OF 1000 CAPTCHAS, EACH CONSISTING OF 3 EVENTS. THE SCORES ARE

SHOWN SEPARATELY FOR BOTH CLASSIFIERS (SCENES, EVENTS) AND

THEY ARE BASED ON 10 DB ESR WHEN USING ORACLE SEGMENTATION.

# training 50 100 200 400 800 1600

Scenes 98.00 98.80 99.10 99.10 99.10 99.20
Events 30.60 32.40 33.00 35.00 36.10 34.90

TABLE IV
PERFORMANCE OF THE SEGMENTATION STAGE. THE SCORES ARE BASED

ON A FIXED TRAINING SET, COMPRISING 800 EXAMPLES AND A FIXED

TEST SET, COMPRISING 1000 EXAMPLES.

ESR [dB] 0 5 10 15

Segmentation accuracy [%] 39.40 57.00 67.50 71.90

for event classification. In addition, the event classification

accuracy can be improved by approximately 8.5 % (averaged

over all features and ESRs) when using oracle segmentation

instead of the power-based segmentation approach.

The results of the listening experiment are given by Tab. VI.

It can be seen that the scene classification accuracy improves

for lower ESR conditions whereas the event classification

accuracy improves for higher ESR conditions. The maximum

scene classification accuracy was found to be 54.70 % and the

maximum event classification accuracy is 82.60 %.

A. Summary and Comparison

Our results show that the human listeners perform better

in classifying noisy sound events than in classifying envi-

ronmental scenes, whereas a machine-learning-based attack

shows superior performance on the latter task. As a result,

the CAPTCHA can be simplified to only asking for the sound

events and not for the environmental scene. However, our re-

sults show that mixing the sound events with the environmental

TABLE V
RESULTS OF THE SIMULATED ATTACK FOR MFCC (A) AND CMRARE (B)
FEATURES, SHOWING THE CLASSIFICATION ACCURACY IN PERCENT. THE

SCORES ARE SHOWN SEPARATELY FOR BOTH CLASSIFIERS (SCENES,
EVENTS). (EVENTS*) SHOWS THE RESULTS WHEN USING ORACLE

SEGMENTATION. THE TRAINING SET COMPRISES 800 EXAMPLES AND THE

TEST SET CONSISTS OF 1000 EXAMPLES.

ESR [dB] 0 5 10 15 Avg.

Scenes 99.95 99.90 99.30 97.40 99.14
Events 10.40 16.40 22.70 27.00 19.13
Events* 18.75 26.55 33.35 35.85 28.63

(a) MFCC features

ESR [dB] 0 5 10 15 Avg.

Scenes 97.10 94.70 92.10 88.70 93.15
Events 10.05 17.70 27.10 36.95 22.95
Events* 16.55 25.00 35.15 45.50 30.55

(b) CMRARE features
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TABLE VI
RESULTS OF THE LISTENING EXPERIMENT, SHOWING THE

CLASSIFICATION ACCURACY FOR SCENES AND EVENTS IN PERCENT. EACH

SCORE IS BASED ON A FIXED TEST SET OF 2000 CAPTCHAS.

ESR [dB] 0 5 10 15 Avg.

Scenes 54.70 52.25 51.15 47.95 51.51
Events 56.45 70.45 78.45 82.60 71.99

A
cc

u
ra

cy
[%

]

Average of 6
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Fig. 4. Performance comparison between recently investigated commercially
available audio CAPTCHAs and our proposed design.

scene is highly beneficial for lowering the performance of

the automated CAPTCHA solver, especially when it makes

use of a signal segmentation stage. The task in the proposed

CAPTCHA is thus to detect and classify the set of events that

are mixed into an environmental background scene.

We compare the performance of our proposed CAPTCHA

with some commercially available schemes in Fig. 4. The first

bar shows the average accuracy of 6 popular speech-based

CAPTCHAs based on the attack of Bursztein et al. [11].

The second bar shows the human accuracy averaged over

10 popular speech-based CAPTCHAs analyzed by Bigham

et al. [22]. The third bar group corresponds to the security

and usability study of Google’s quasi-standard “reCAPTCHA”

conducted by Meutzner et al [5]. It can bee seen that the

reported human accuracy is between 24 % and 39 %, which

is below the accuracy of 52 % and 63 % achieved by recent

attacks. The scores for our proposed CAPTCHA show the

event classification accuracy, averaged over all conditions of

Tab. V. It can be seen that this new CAPTCHA yields a

clearly better trade-off between usability and security (72 %

for humans vs. 21 % for the attack) than the commercially

available CAPTCHAs.

VI. CONCLUSION

We have proposed a non-speech audio CAPTCHA based

on the detection and classification of acoustic sound events

that are mixed with an environmental scene. The CAPTCHA

has been evaluated with respect to security, using a simulated

attack, and regarding usability, using a large-scale listening

experiment.

We can conclude that the proposed non-speech CAPTCHA

represents a suitable alternative to conventional speech-based

schemes in that it is independent of language skills and yields a

good trade-off between human usability and robustness against

automated attacks. The human success rate for our proposed

design shows a relative improvement of 85 % when comparing

with the average results that were reported for a wide range

of commercially available schemes. Furthermore, a popular

attack strategy that has been applied to break a large number

of different audio CAPTCHAs, achieving more than 50 % on

average, was only able to achieve a moderate success rate of

21 % for our proposed design.
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