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ABSTRACT

The relative positions of the sensors from one another in a

rigid sensor network are known and locating the network re-

duces to obtaining its position, orientation angle, and trans-

lational and angular velocities with respect to a global coor-

dinate frame from the measurements with anchors. Previous

solution is computationally demanding that may not be suit-

able in a resource constrained environment. We propose a

solution for this highly nonlinear estimation problem using

the divide and conquer approach in the 2-D scenario. We first

obtain from the measurements the sensor positions and veloc-

ities pretending no prior knowledge among them and then ex-

ploit their relative positions to estimate the unknown param-

eters. Methods are available for the first step. We focus on

the second step and develop a closed-form solution through

nuisance variables and nonlinear transformations. The pro-

posed estimator is computationally attractive and has CRLB

performance for Gaussian noise over the small error region.

Index Terms— Closed-form solution, localization, mo-

bile rigid network, time and Doppler measurements

1. INTRODUCTION

Locating an object requires a network of sensors whose

positions are known [1]. In practice the positions of the

sensors are often not known when they are deployed. Self-

localization of the sensor nodes is a promising technique to

identify the positions of the sensors through message ex-

changes among the nodes and the anchors [2, 3]. Over the

years many self-localization methods have been developed,

mostly based on range measurements [4, 5].

Self-localization typically assumes the sensor node posi-

tions are independent of one another. In some situations, the

relative positions of the sensors are known exactly [6–8]. A

simple example is that the sensors are mounted on a fixed

structure such as a vehicle. Consequently, locating the sensor

nodes reduces to determining the position (translation vector)

and the orientation (rotation matrix) of the entire network, and

the translational and angular velocities as well if it is moving.

By carefully exploiting the relative positions, the sensor loca-

tions can be identified with much better accuracy. The focus

of this paper is to locate a rigid sensor network in which the

relative positions of the nodes are known a priori.

A direct approach for the localization problem is to ex-

press the measurements in terms of the position vector, rota-

tion matrix and velocities and formulate a cost function for

optimization. This approach is not practical. First, the mea-

surement equations are highly nonlinear with the unknowns

coupled. Second, the elements in the rotation matrix are not

free variables and must satisfy certain constraints [9].

In this paper, we propose an indirect approach to solve

the problem in 2-D. The proposed approach obtains the sen-

sor positions and velocities first, assuming there is no knowl-

edge among them. Second, they are used to estimate the un-

knowns by exploiting the relative positions. Such an approach

is called divide and conquer (DAC) in the literature [10]. Un-

der Gaussian noise and independent measurements the DAC

approach has been shown to achieve the CRLB accuracy, with

the limitation that the thresholding effect may appear at a

lower noise level.

Although the indirect approach simplifies the problem a

little and the solution to the first step is available in the liter-

ature, the second step remains to be a nonlinear constrained

optimization problem. We propose a two-stage processing

in the second step through nuisance variables and nonlinear

transformations to obtain a computationally attractive closed-

form solution.

The proposed solution is different from the maximum

likelihood estimator using iterative geometric descent [6] that

is very computationally demanding and requires initial so-

lution guesses. The method presented in [7] by building a

dynamic system that evolves on the special Euclidean group

is suitable only for near noise-free measurements. The or-

thogonal Procrustes problem technique proposed in [8] has

suboptimum performance compared to the CRLB. All of

them work for a stationary rigid network. For a moving rigid

network, [11] requires the translational and angular velocities

to be known. The solution from [12] uses sequential estima-

tion and refinement technique. It could be computationally

demanding and may not be suitable in a resource constrained

environment.

The study here assumes range (TOA) and range rate

(Doppler) observations and the proposed solution can be

easily adopted to other forms of measurements.

We shall use the common notations that bold lowercase

letter denotes column vector and bold uppercase letter repre-
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Fig. 1. Localization scenario.

sents matrix. I and O are identity and zero matrices, the size

is 2 unless stated otherwise. ⊗ is the Kronecker product.

2. LOCALIZATION SCENARIO

As illustrated in Fig. 1, we are interested in determining the

positions si ∈ R
2 and velocities ṡi ∈ R

2 of the sensor nodes,

i = 1, 2, . . . , N , using the range and range rate measure-

ments

rmi = romi + vmi

= ‖am − si‖+ vmi (1)

ṙmi =
(si − am)T

romi

ṡi + v̇mi (2)

from a number of stationary anchors whose positions am ∈
R

2, m = 1, 2, . . . , M , are known exactly. In (1) and (2),

vmi and v̇mi are zero-mean Gaussian noise that can be cor-

related themselves and with each other. We assume the mea-

surements from different sensors are independent. The col-

lection of all the measurements forms the observation vector.

Unlike a typical sensor network localization problem, the

relative positions of the sensors in a local reference, denoted

by ci, are known exactly. Let the position of the local refer-

ence be t ∈ R
2 and the orientation angle be θ in the global

coordinate frame. Then we have the relationship [8]

si = Qci + t (3)

for the sensor positions. Q is the rotation matrix defined as

Q =

[
cos θ − sin θ
sin θ cos θ

]
. (4)

The velocity relationship is [12]

ṡi = [ω]×Qci + ṫ (5)

where

[ω]× =

[
0 −1
1 0

]
ω . (6)

ṫ is the translational velocity and ω the angular velocity of the

local reference for the rigid network.

Since the sensor positions and velocities must fulfill (3)

and (5), the problem becomes the estimation of t, θ, ṫ and

ω. Note that through the parameterization in terms of θ, the

constraints on the elements of Q is automatically satisfied. In

this study, we only use the measurements between the sensors

and the anchors. The range measurements between two sen-

sors bear no additional information since the relative positions

of the sensors are completely known.

3. NEW METHOD

Obtaining the unknown parameters directly from the mea-

surements by putting (3) and (5) into (1) and (2) is difficult

due to the highly nonlinear relationships and the coupling of

the unknowns. We shall resort to the DAC approach by first

obtaining (si, ṡi) from the measurements and next estimating

the unknowns using them. It has been shown in [10] that the

DAC technique can yield the CRLB performance under Gaus-

sian measurement noise, when the measurements for different

sensors are uncorrelated.

The research of estimating (si, ṡi) from the measurements

is quite mature and many algorithms are available from liter-

ature, e.g. [12, 16]. We shall focus on the second step here.

3.1. Utilizing Initial Estimate

Let (ŝi, ˆ̇si) be the solution from the first step with (nsi ,nṡi )

the estimation noise. From (3) we have [14]

ŝi = Qci + t+ nsi = (cTi ⊗ I)Γ

[
cos θ
sin θ

]
+ t+ nsi (7)

where we have used the vectorization

vec(Q) = Γ

[
cos θ
sin θ

]
(8)

and Γ is a 4 × 2 sparse matrix with the (1, 1), (2, 2) and (4,

1) elements equal to 1 and (3, 2) element −1. Similarly, from

(5)

ˆ̇si = [ω]×Qci+ṫ+nṡi = (cTi ⊗
[
0 −1
1 0

]
)Γ

[
ω cos θ
ω sin θ

]
+ṫ+nṡi .

(9)

In (7) and (9), nsi and nṡi are dependent on the range and

range rate measurement noises.

Stacking (7) and (9) over i from 1 to N yields

d = E1

⎡
⎢⎢⎣

cos θ
sin θ
ω cos θ
ω sin θ

⎤
⎥⎥⎦+E2

[
t
ṫ

]
+ n . (10)
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d is the collections of ŝi and ˆ̇si over i,

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cT1 ⊗ I)Γ O

O

(
cT1 ⊗

[
0 −1
1 0

])
Γ

...
...

(cTN ⊗ I)Γ O

O

(
cTN ⊗

[
0 −1
1 0

])
Γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,E2 = 1⊗ I .

(11)

In E2 the sizes of 1 and I are N and 4 respectively. n is

resulted from the estimation error of the first step and it can

be approximated as a zero-mean Gaussian noise vector over

the small error region since the measurement noise is Gaus-

sian [13]. The covariance matrix is denoted by Rn, which

is block diagonal with individual block for each sensor since

the measurements from different sensors are independent. It

can be obtained based on the measurement noise covariance

matrix and the estimates ŝi and ˆ̇si [12].

The unknowns θ and ω are embedded in x = [cos θ, sin θ,
ω cos θ, ω sin θ]T . We propose to solve x instead by imposing

two quadratic constraints

x2
1 + x2

2 = 1 (12)

x1x4 = x2x3 . (13)

It can be shown that the weighted linear least squares [13]

solution to (10) with the two quadratic constraints will yield

the optimum accuracy as solving (θ, ω) directly from (10).

This constrained optimization problem remains challeng-

ing to solve. We shall propose a computationally attractive

closed-form solution to the problem.

3.2. Closed-form Solution

There are two sets of variables to be solved, x and [tT , ṫT ]T ,

both appear linear in (10) with constraints imposed on the

former only. In term of x, the weighted least squares (WLS)

solution for [tT , ṫT ]T with weighting R−1
n is [13]

[ t̂T , ˆ̇t
T

]T =
(
ET

2 R
−1
n E2

)−1
ET

2 R
−1
n (d−E1x) . (14)

Putting it into (10) yields a linear equation in x only,

h1 = G1x+ n (15)

where P = I − E2

(
ET

2 R
−1
n E2

)−1
ET

2 R
−1
n , h1 = Pd and

G1 = PE1.

We shall propose a two-stage approach to solve (15) for

x under the constraints (12) and (13). The first stage ignores

the constraints to obtain x. The second stage utilizes the con-

straints to construct another minimization process to improve

the estimate. Once it is found, [tT , ṫT ]T is immediately avail-

able from (14). The proposed two-stage solution is new and

different from those for non-rigid networks [15, 16].

3.2.1. Two-Stage Processing

1) Stage-1

We omit the constraints and the WLS solution is

x̂ = (GT
1 W1G1)

−1GT
1 W1h1 (16)

where W1 = R−1
n . Let us denote the estimation error as Δx.

Then E[ΔxΔxT ] = cov(x̂) = (GT
1 W1G1)

−1.

2) Stage-2

We shall correct the stage-1 solution by taking the two

constraints into account. It is more convenient to express

these two constraints into different forms. Multiplying both

sides of (13) by x2 and substituting (12) for x2
2 give

x3 = (x1x3 + x2x4)x1. (17)

Multiplying both sides of (13) by x1 and using (12) yield

x4 = (x1x3 + x2x4)x2. (18)

We choose the parameter vector as β = [ω cos θ, ω sin θ]T

=[x3, x4]
T . The elements have direct mapping relationship

with the unknowns θ and ω.

To utilize the constraint (17), we express the right side in

terms of the elements of x̂ (i.e. xi = x̂i − Δxi) and obtain,

after ignoring the second and third order errors,

x3 = (x̂1x̂3 + x̂2x̂4)x̂1 − (2x̂1x̂3 + x̂2x̂4)Δx1

− x̂1x̂4Δx2 − x̂2
1Δx3 − x̂1x̂2Δx4 . (19)

Applying the same process gives the corresponding expres-

sion for (18).

We can now construct the matrix equation for stage-2 as

B2Δx = h2 −G2β (20)

where

B2 =

⎡
⎢⎢⎣

0 0 1 0
2x̂1x̂3 + x̂2x̂4 x̂1x̂4 x̂2

1 x̂1x̂2

0 0 0 1
x̂2x̂3 2x̂2x̂4 + x̂1x̂3 x̂1x̂2 x̂2

2

⎤
⎥⎥⎦ ,

h2 =

⎡
⎢⎢⎣

x̂3

(x̂1x̂3 + x̂2x̂4)x̂1

x̂4

(x̂1x̂3 + x̂2x̂4)x̂2

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ . (21)

The WLS solution for β is

β̂ = (GT
2 W2G2)

−1GT
2 W2h2 (22)

where the weighting matrix is from the covariance of x̂:

W2 = [B2(G
T
1 W1G1)

−1BT
2 ]

−1

= B−T
2 (GT

1 W1G1)B
−1
2 . (23)
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Fig. 2. Performance for orientation θ (deg, upper curves) and angu-

lar velocity ω (lower curves) estimations.

Finally, we can recover the estimates for θ and ω by

ω̂ = ‖β̂‖sgn(x̂1x̂3 + x̂2x̂4) (24)

θ̂ = arctan2(β̂2/ω̂, β̂1/ω̂) (25)

where arctan2 is the four-quadrant inverse tangent function.

Updating x and putting it into (14) give the estimates for t and

ṫ. The final estimates of the sensor positions and velocities

can now be obtained using (3) and (5).

Given that the initial estimates (ŝi, ˆ̇si), i = 1, 2, · · · , N
attain the CRLB when ignoring the prior knowledge of the

relative sensor positions, we can show theoretically that the

performance of the proposed closed-form solution in Section

3 approaches the CRLB accuracy over the small error region.

This can be accomplished by expressing the covariance of ω̂
and θ̂ in terms of cov(β̂) using (24) and (25). cov(β̂) is equal

to (GT
2 W2G2)

−1. After substituting (23) and noting that

W1 = R−1
n , the covariance of ω̂ and θ̂ equals the correspond-

ing CRLB. Continuing in a similar manner we can also prove

that t̂ andˆ̇t also reach their CRLB accuracy.

4. SIMULATIONS

There are M = 6 anchors placed uniformly on the circle with

am = 25[cos 2π
M (m−1), sin 2π

M (m−1)]T . Each sensor is able

to acquire the measurements from all anchors. The sensor

geometry is a square given by

C = 5

[
0 1 1 0
0 0 1 1

]

where the columns are ci’s. It specifies the positions of the

sensors with respect to the first. The rigid network has ori-

entation θ = 20deg and position t = [100 100]T with re-

spect to the global coordinate frame. The angular velocity

is ω = 0.3 rad/s and translational velocity is ṫ = [1, 1]T .

For simplicity the covariance matrix of the distance measure-

ments is set to be Rv = σ2I, the range rate measurements
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Fig. 3. Performance for position t (upper curves) and translational

velocity ṫ (lower curves) estimations.
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Fig. 4. Performance for sensor positions (upper curves) and veloci-

ties (lower curves) estimations.

are uncorrelated with the distance measurements and have a

covariance matrix Rv̇ = 0.1Rv. The number of ensemble

runs is L = 2000.

The first step uses the algorithm based on [12,16] to obtain

the initial sensor position and velocity.

4.1. Accuracy Comparison

Fig. 2 shows the results of the orientation angle (upper

curves) and angular velocity (lower curves) using the pro-

posed method and the method from [12]. The proposed

method reaches the CRLB [12] performance in the small

error region and has comparable accuracy with the method

in [12]. It deviates from the bound a little earlier as the noise

level increases. We have similar observations for the position

and translational velocity estimates as shown in Fig. 3.

Fig. 4 illustrates the performance in terms of the sensor

position and velocity estimates. When we exploit the known

relative sensor locations, the accuracy is much better than

without (initial estimate) in both positions and velocities. We
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Fig. 5. Computational times vs anchor number M .

generated the CRLB for the sensor positions and velocities

using the CRLB for the four parameters through the relation-

ships (3) and (5) [13]. The proposed algorithm achieves the

optimum performance when the noise level is not significant

and it performs comparably with the algorithm from [12] un-

less the noise level is high.

4.2. Computation Time Comparison

The proposed method has the benefit of lower computational

complexity than the one in [12]. Fig. 5 illustrates the compu-

tation times (millisecond) of each ensemble run obtained from

MATLAB implementation of two methods, when the number

of anchors M varies from 3 to 18. The computational advan-

tage of the proposed method is obvious when the number of

anchors is large. The proposed method is a good alternative

when the noise power is not significant.

5. CONCLUSION

A new estimator for locating a moving rigid sensor network

in 2-D is presented. The proposed estimator uses the DAC

approach where initial sensor positions and velocities are es-

timated from the measurements first and the unknowns are de-

duced from them by utilizing the known relative positions of

the sensors. We have developed a computationally attractive

closed-form solution that involves two quadratic constraints.

Simulations show good performance of the proposed estima-

tor and it achieves the CRLB accuracy for Gaussian noise

over the small error region. It requires less computation than

the previous solution from [12], which is particularly impor-

tant when operating under a resource constrained environ-

ment. The work presented here focuses on the 2-D scenario.

Extension to the 3-D case is under investigation.
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