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Abstract—This paper deals with learning an overcomplete set
of atoms that have low mutual coherence. To this aim, we
propose a new dictionary learning (DL) problem that enables
a control on the amounts of the decomposition error and the
mutual coherence of the atoms of the dictionary. Unlike existing
methods, our new problem directly incorporates the mutual
coherence term into the usual DL problem as a regularizer. We
also propose an efficient algorithm to solve the new problem.
Our new algorithm uses block coordinate descent, and updates
the dictionary atom-by-atom, leading to closed-form solutions.
We demonstrate the superiority of our new method over existing
approaches in learning low-coherence overcomplete dictionaries
for natural image patches.

I. INTRODUCTION

A. Sparse signal decomposition

Sparse signal decomposition [1] provides an efficient signal
model that has been effectively exploited in many appli-
cations, including image enhancement [1], signal separation
[2], signal detection [3], and compressed sensing [4]. Let
y ∈ Rn be a target signal and D = [d1, · · · ,dm] be a
dictionary of m atoms. Then, the decomposition of y over
d is written as y =

∑m
i=1 xidi = Dx, where x is the

representation vector indicating the contribution of each atom
in the decomposition. The dictionary is usually overcomplete,
meaning that m > n. So, the decomposition problem is ill-
posed in general, implying that there exist many solutions
for x. Among these numerous solutions, the sparsest one
which contains as many as possible zeros is desired in sparse
signal decomposition. Fortunately, it has been shown that the
sparsest solution is unique under some conditions [1], and
many practical algorithms have been proposed to find it [5].

B. Overcomplete dictionary learning

In a sparse decomposition application, an important question
is how to choose the dictionary. While there exist some
predefined and analytical options for the dictionary, such as
discrete cosine transform (DCT), Fourier, and wavelets, it has
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been shown that adapting the atoms to the structure of the
data leads to much better performances [6]–[9]. This process
is called dictionary learning (DL).

To explain the DL problem more precisely, consider a
number of N training signals {yi}Ni=1 collected as the columns
of a training data matrix Y ∈ Rn×N . The DL problem is then
formulated as

min
D,X

{
1

2
‖Y −DX‖2F + λx‖X‖0

}
s.t. ∀i, ‖di‖2 = 1, (1)

where, ‖.‖F is the Frobenius norm, ‖.‖0 denotes the `0 pseudo
norm which counts the number of nonzeros, and λx > 0 is a
regularization parameter. The norm constraint on the atoms is
for avoiding scale ambiguity. Algorithms for solving the above
DL problem are usually based on alternating minimization
[6], [7], [9], consisting of iterative minimization of the cost
function over one variable while fixing the other one. The
minimization over X is called the sparse decomposition stage,
and the minimization over D is called the dictionary update
stage.

C. Learning dictionaries with low mutual coherence

To ensure successful performance of sparse decomposition
algorithms, the dictionary must satisfy certain conditions. In
fact, many previous works have revealed that the uniqueness
and the stability of a sparse decomposition problem are di-
rectly related to the properties of the dictionary [5], [10], [11].
One measure for the goodness of a dictionary is defined as the
maximum (in absolute) amount of the correlations between
any two distinct atoms. This is called the mutual coherence
(MC) of the dictionary [11], which is mathematically defined
as (the dictionary is assumed to have normalized columns)

µ(D) , max
i6=j

|〈di,dj〉|· (2)

For a dictionary of size n×m, the MC value is lower-bounded
by µ ≥

√
(m− n)/n(m− 1), which is known as the Welch

bound [12]. The MC has been exploited in many works [13]–
[17] to learn dictionaries that provide good decomposition
properties in addition to adaptation to the training signals.
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Previous works on learning dictionaries with low MCs
are divided into two categories: regularized and constrained
approaches. The first category of the methods, including [13]–
[15], are based on the regularization of the DL cost function
with an incoherency promoting term as follows1

min
D∈D

1

2
‖Y −DX‖2F + λ‖DTD− I‖2F , (3)

where D , {D ∈ Rn×m | ∀i, ‖di‖2 = 1}, and λ > 0. The
use of the second term in the above cost function is motivated
by the following relation

‖DTD− I‖2F =
∑
i6=j

|〈di,dj〉|2 +
∑
i

(〈di,di〉 − 1)2, (4)

where 〈., .〉 denotes the (real) dot-product operation. The first
term in the above equation is responsible for minimizing
the average correlations between distinct atoms, and the last
term encourages the atoms to have unit norms. A number of
practical algorithms have been proposed to solve (3), e.g., a
limited-memory BFGS (l-BFGS) algorithm [18] proposed in
[13], and a proximal algorithm proposed in [15].

The second group of methods including [16], [17] propose
the following constrained problem

min
D∈D

1

2
‖Y −DX‖2F s.t. µ(D) ≤ µ0, (5)

where, µ0 > 0 is a desired level of MC. To solve this
problem, a two-step approach was proposed in [17]. In the first
step, the dictionary is updated to minimize the approximation
error, ignoring the MC constraint. In the second step, the
dictionary returned by the first step is optimized to satisfy
the MC constraint. This step is then followed by a dictionary
rotation, in which the dictionary is rotated to minimize the
approximation error.

In this paper, we focus on regularized approaches, and
propose a new regularized low mutual coherence DL problem
that unlike existing ones, directly incorporates the MC term
defined in (2) into the general DL problem. We also propose
an efficient algorithm to solve our new problem, which leads
to closed-form solutions. To evaluate the performance of the
proposed approach and show its advantage over the previous
algorithms, we conducted a sparse image patch decomposition
experiment. The results show that our new algorithm makes
a much better trade-off between lowering the MC of the dic-
tionary and reducing the decomposition errors of the training
signals.

The rest of the paper is organized as follows. Our proposed
approach, consisting of our new problem and its proposed
solver, is introduced in Section II, and Section III presents
the simulation results and discussions.

1Note that, the constraint on D does not affect the sparse decomposition
stage, and any algorithm can be used to perform this stage. So, in the
remaining of the paper, we focus merely on the dictionary update stage.

II. PROPOSED APPROACH

A. Problem formulation

In this subsection, we propose our new regularized dictio-
nary update problem to be used within a general DL problem.
To this end, first notice the following equivalent definition of
MC

µ(D) = ‖DTD− I‖∞, (6)

where ‖X‖∞ , maxi,j |xij |. Our new dictionary update
problem is then defined as

min
D∈D

1

2
‖Y −DX‖2F + λ‖DTD− I‖∞, (7)

Comparing (7) with (3) reveals that the regularization term
used in previous work is an approximation of MC, in which
the `∞ norm has been replaced with the Frobenius norm.

B. Proposed algorithm

To solve (7), we use a block coordinate descent approach,
and update the atoms one-by-one. Noting the relation DX =∑m
i=1 diz

T
i where zi is the ith column of Z , XT , and that

‖di‖2 = 1, the update problem for the ith atom would be

min
d

{
1

2
‖Ei − dzTi ‖2F + λ‖DT

i d‖∞
}

s.t. ‖di‖2 = 1, (8)

where Ei , Y − DX + diz
T
i is the error matrix when the

effect of the ith atom is removed, and Di consists of the all
atoms excluding di. The matrices Ei and Di are constructed
by using the most recent values of the atoms.

Let us define an auxiliary variable c , DT
i d in (8). Doing

so, we have the following equivalent problem

min
d,c

{
1

2
‖Ei − dzTi ‖2F + λ‖c‖∞

}
s.t. c = DT

i d, ‖di‖2 = 1, (9)

To solve (9), we propose the following alternative problem

min
d,c

{
1

2
‖Ei − dzTi ‖2F + λ‖c‖∞ +

α

2
‖c−DT

i d‖22
}

s.t. ‖di‖2 = 1, (10)

where α > 0 is a penalty parameter. Note that, when α→∞,
we must have c = DT

i d in the cost function of (10). So, for a
large enough α, problem (10) becomes equivalent to problem
(9), and thus (8).

Our strategy for solving (10) is to use alternating minimiza-
tion. To do so, consider first the update problem for c

min
c

{
1

2
‖c− ci‖22 + β‖c‖∞

}
, (11)

where ci , DT
i d and β , λ/α. To solve this problem, we

use the notion of proximal mapping [19].
Definition 1 ( [19]): The proximal mapping of a function

f : domf −→ R at a point x is defined as

proxf (x) , argmin
u∈domf

{
1

2
‖u− x‖22 + f(u)

}
·
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So, the solution for problem (11) is recognized as the proximal
mapping of β‖ · ‖∞ at ci. To derive the associated proximal
mapping, we use the Moreau decomposition [19], which states
that for any convex function f and its convex conjugate [20]
f∗ we have

x = proxf (x) + proxf∗(x), (12)

For βf , it can be verified that

x = proxβf (x) + βproxf∗/β(x/β)· (13)

Let f(x) , ‖x‖∞. The convex conjugate of f is f∗ = IB1
1
,

that is, the indicator function of the unit `1 norm ball [20].
Then, using (13) and the fact that the proximal mapping of
the indicator function of a set is the projection onto that set
[19], it is verified that

proxβf (x) = x− PBβ
1
(x), (14)

where Bβ1 is the `1 norm ball of radius β, and PBβ
1

is the

projection onto Bβ1 . To perform this projection, there exist
efficient algorithms, such as the one proposed in [21], which
is in closed-form. So, the final solution for (11) is obtained as

c∗ = ci − PBβ
1
(ci)· (15)

Now, consider the update problem for di, which is

min
d

{
1

2
‖Ei − dzTi ‖2F +

α

2
‖c−DT

i d‖22
}

s.t. ‖di‖2 = 1·
(16)

Setting the gradient of the above cost function with respect to
d equal to zero leads to

Qid
∗ = ai, (17)

where Qi , αDiD
T
i +‖zi‖22I, with I being the n×n identity

matrix, and ai , Eizi+αDic
∗. Since Qi is positive definite,

the above system of equations can be efficiently solved using
the conjugate gradient algorithm [22]. The solution is then
normalized to satisfy the constraint in (16). The final update
procedure for the ith atom consists of a few iterations between
(15) and (17).

1) Choosing the penalty parameter: As said previously, the
penalty parameter α should be chosen large enough to ensure
that the solution of (10) well approximates the solution of the
original problem (8). This is equivalent to choosing a very
small value for the new parameter β. However, considering
problem (11) and its solution given in (15), a small value for
β decreases the convergence speed of the {ci} sequence.

To overcome this problem, we propose to solve (10) for
a decreasing sequence of β’s, starting with a relatively large
value. Moreover, the solution of each subproblem, correspond-
ing to a particular value of β, is used as a warm-start for the
next one. In this way, the sequence of the solutions gradually
approximates the desired solution of problem (8). Here, we
propose an exponential decrease for β as follows

βj = γj · β0, (18)

where 0 < γ < 1, and βj and β0 denote the jth and the initial
value for β, respectively.

Algorithm 1 Proposed Low mutual coherence DL algorithm

1: Require: Y ∈ Rn×N , D0 ∈ Rn×m, λ, τ , β0, γ, J , L
2: Initialization: D = D0

3: for k = 1, 2, · · · do
4: 1. Sparse decomposition: X = SD(Y,D, τ)
5: 2. Dictionary update:
6: for i = 1, 2, · · · ,m do
7: Ei = Y −DX+ diz

T
i

8: for j = 1, 2, · · · , J do
9: βj = γj · β0

10: for l = 1, 2, · · · , L do
11: Update c∗i using (15) with β = βj
12: Update d∗i using (17). Normalize the result.
13: end for
14: end for
15: end for
16: end for
17: Output: D

2) Final algorithm: The final algorithm is summarized in
Algorithm 1. In this algorithm, SD(Y,D, τ) stands for the
sparse decompositions of the columns of Y over D with
parameter τ , which can be, for example, a regularization
parameter or maximum allowed number of atoms in the
decompositions.

III. SIMULATIONS

In this section, we compare the performance of our proposed
regularized low mutual coherence DL algorithm with previous
ones through a sparse image patch decomposition experiment.
From the existing low coherence DL algorithms, we chose the
bounded self coherence (BSC) DL algorithm proposed in [13],
which showed a better overall performance among the others
in this experiment2.

In the same way as [23], we used a collection of seventeen
well-known standard images, including Barbara, Cameraman,
Lena, and Peppers. A number of 5000 patches of size 8 × 8
were extracted from these images, and then converted to
equivalent column vectors of length 64. For both DL algo-
rithms, the initial dictionary was chosen as an overcomplete
DCT dictionary of size 64 × 256, whose MC was 0.99.
To perform the sparse decomposition stage, the orthogonal
matching pursuit (OMP) algorithm [24] was employed, which
sequentially selects appropriate atoms one-by-one in a greedy
fashion. A number of 5 atoms was allowed to participate
in sparse decomposition of every training signal. Also, a
number of 100 iterations (alternates) between the sparse de-
composition and the dictionary update stages were used for
both algorithms. Root mean square error (RMSE), defined as
‖Y−DX‖F /(n ·N), was used as a measure of performance.

2Here, one may argue that for a fair comparison, the same atom-by-atom
updating procedure used for solving the proposed problem (7) should also be
used for problem (3), and then compare the two algorithms. We implemented
and tested this new solver of problem (3), but the algorithm diverged in most
cases.
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Fig. 1: Final RMSE and the achieved MC versus λ for BSC-
DL. The Welch bound is also depicted as µmin.
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Fig. 2: Final RMSE and the achieved MC versus λ for
Algorithm 1. The Welch bound is also depicted as µmin.

The parameters of the l-BFGS algorithm used in BSC-DL
were chosen as suggested by the authors of [13]. For our
proposed algorithm outlined in Algorithm 1, we set γ = 0.85,
β0 = 10, J = 30, and L = 1, which showed a promising
performance.

Final RMSEs and the achieved MCs versus λ are depicted
in Figs. 1 and 2. Inspecting the results reveals that, our
proposed algorithm makes a much better compromise between
minimizing the MC and the RMSE. It is also able to achieve
an MC value of 0.15, which is very close to the Welch bound
µmin = 0.10, compared to the minimum MC of 0.63 achieved
by BSC-DL.

The evolutions of the MC and the RMSE along DL alter-
nates, for λ’s corresponding to the minimum achieved MCs by
the two algorithms are shown in Figs. 3 and 4, respectively.
As demonstrated, our proposed algorithm shows a smooth
behavior, except for the first DL alternate, while BSC-DL has a
non-monotonic behavior. Moreover, the final RMSEs for both
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Fig. 3: MC as a function of DL alternates for both algorithms,
and for λ’s corresponding to the minimum achieved MCs. The
Welch bound is also depicted as µmin.
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Fig. 4: RMSE as a function of DL alternates for both algo-
rithms, and for λ’s corresponding to the minimum achieved
MCs.

algorithms are higher that the one corresponding to the DCT
dictionary (first alternate). This is because, larger weights are
enforced on the incoherency promoting terms in this case,
which is more noticeable for our proposed algorithm as it
learns a dictionary with a much lower MC than the initial DCT
dictionary. From these figures, it is also observed that for our
proposed algorithm, while the MC value decreases along the
DL alternates, the RMSE value also monotonically decreases.
This is in contrast to the BSC-DL’s behavior, where proceeding
along the DL alternates, the MC of the dictionary decreases
while its decomposition error increases, at least in this extreme
scenario. To see the distribution of the inner products between
every two atoms of the dictionaries corresponding to these
minimum MCs, we use the Gram matrix, which is defined as
G , DTD. The off-diagonal entries of G correspond to the
inner products between every two distinct atoms. Magnitudes
of the Gram matrices for the initial DCT dictionary and the
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Fig. 5: Magnitudes of the Gram matrices, defined as G , DTD, for the initial DCT dictionary, and the final dictionaries
learned by BSC-DL and Algorithm 1 that correspond to the smallest possible MC they can reach.

dictionaries learned by BSC-DL and our proposed algorithm
are shown in Fig. 5. It can be seen that, compared to the
initial dictionary and the final dictionary learned by BSC-DL,
our proposed algorithm effectively reduces the correlations
between distinct atoms.

To have a rough measure of the computational load of
the algorithms, their runtimes are reported. Our simulations
were carried out on a 64 bit Windows 7 operating system
with 12 GB RAM and an Intel core i7 CPU. The averaged
runtimes, in seconds, for BSC-DL and Algorithm 1 were 123
and 178, respectively, indicating that our proposed algorithm
has a higher computational complexity.

IV. CONCLUSION

We addressed learning overcomplete dictionaries with low
mutual coherences for sparse signal decomposition. This
problem has been studied in some previous works and a
number of algorithms have been proposed to this aim. In this
paper, we proposed a new dictionary learning problem that
unlike previous works, directly solves the mutual coherence
regularized DL problem. We empirically demonstrated the
superior performance of our new algorithm over the existing
ones in a sparse image patch decomposition problem. It was
noticed that our proposed algorithm is able to efficiently learn
overcomplete dictionaries with very low mutual coherences
while being adapted to the training signals.
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