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Abstract—The possibility of studying multiple objects at once
for forensic analysis has paved the way to the development of
multimedia phylogeny algorithms. Concerning video phylogeny,
a fundamental step at the base of many applications is multiple
video alignment. This is, given a pool of near-duplicate video
sequences partially overlapping in the temporal domain, find
the relative time delay between all of them. As phylogeny
methods typically takes into account huge quantities of data,
the used alignment algorithms must be computationally efficient.
In this paper, we propose a solution for multiple video alignment
based on the minimisation of a least-square cost function. The
proposed solution can be computed in closed form with reduced
computational complexity. Moreover, we propose two possible
solutions for refining the estimated alignment based on the
removal of outlier measurements.

I. INTRODUCTION

Thanks to the rapid diffusion of multimedia sharing plat-
forms, the amount of video sequences distributed online is
constantly increasing. Moreover, as editing software tools
are at everyone’s hand, video content modifications can be
easily applied by everyone. This possibility has determined
the spread of near-duplicate (ND) video objects, i.e., different
edited versions of the same original content. In order to regu-
late this huge amount of information, the forensics community
has developed a wide set of algorithms and tools for video
analysis and authentication [1].

Many of these methods are based on the analysis of single
video objects to study their past history. As an example, in
[2], [3], [4], the authors study video coding history. Video
tampering detection and localization are tackled in [5], [6],
[7]. Moreover, the problem of video recapture is faced in [8],
[9], [10] according to different hypothesis.

However, with the diffusion of near-duplicate contents,
the forensics community has started developing methods that
synergically exploit information coming from all of them
to perform deeper analysis. For example, in [11], [12], the
authors focus on reconstructing the video phylogeny tree. This
is an acyclic directed graph representing the ancestral relation-
ships between all possible video pairs in the analysed pool.
This enables to detect the user that originally posted some
illicit material, or to solve ownership issues. Additionally, in
[13], a system for reconstructing the original sequence used
to generate a set of ND videos was developed. This enables
to reconstruct some video content no more available online in
its totality, as well as to shed an interesting insight on the way
content has been distributed and re-used.

A key step at the base of the aforementioned video phy-
logeny algorithms is the temporal alignment of ND videos.

As a matter of fact, in [12], videos must be pair-wise aligned
to be frame-wise compared. A wrong alignment is proved to
bring to very inaccurate video phylogeny tree reconstructions.
Moreover, in [13], the concept of video alignment is brought
to a different level. Indeed, alignment is not required for video
pairs only, but a global alignment consistent for all the videos
in the analysis pool is requested.

In addition to video phylogeny, video temporal alignment
has been deeply studied also for many other applications,
such as video retrieval [14], event retrieval [15], gesture
recognition [16], security [17] and so on. However, video
alignment algorithms developed in these fields, as [18], [19],
[20], are typically computationally expensive. Indeed, the
alignment procedure often comes as part of the solution of a
more complex problem (e.g., processing of videos from very
different view-points, alignment of videos at different frame
rate, video matching in huge catalogues, etc.). Therefore, even
though these techniques are very accurate, they are not suitable
for video phylogeny purposes.

In this paper, we propose an algorithm for global temporal
alignment of a pool of near-duplicate videos, specifically tai-
lored to video phylogeny problems. In particular, our proposed
method first estimates the misalignment between each video
pair in the NDs pool. Then, it exploits all pair-wise alignment
information to estimate the global alignment consistent for
all videos in closed-form. The ability of solving the problem
in closed-form enables the algorithm to be computationally
efficient, which is of paramount importance for phylogeny
applications. Finally, two procedures for detecting possible
outlier measurements in pair-wise alignment are proposed.
These guarantee an accurate global video alignment estimation
even when some video pairs are not correctly aligned.

An experimental campaign on 2100 video sequences and
additional simulated data has been conducted to validate the
developed technique. More specifically, we compared the
performances of the proposed solution with other alignment
algorithms whose computational complexity is comparable to
ours.

The rest of the paper is structured as follows. Section II
reports the formal definition of the problem. Section III
describes each step of the proposed algorithm, from pair-wise
alignment to outlier removal. Section IV shows the results
achieved in our experimental campaign. Finally, Section V
concludes the paper.
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Fig. 1: Problem setup. A set of ND videos Yi are generated from X.
As some of them overlap in time, temporal alignment is achievable
even though X is not available.

II. PROBLEM FORMULATION

Let X be an original video sequence relative to a particular
event. We define a near-duplicate (ND) video of X a time-
clipped version of X, to which content preserving trans-
formations (e.g., cropping, compression, resize, brightness
enhancement, logo addition and so on) have been applied.
With reference to Figure 1, let Y1, . . . ,YK denote a set of K
near-duplicate videos generated from X. We can associate to
each video Yi a starting time ti on a common timeline. The
misalignment of video Yj with respect to video Yi is defined
as

Θi,j = tj − ti. (1)

In this work we propose a method that aims to produce
a global temporal alignment of a collection of near-duplicate
videos Y1, . . . ,YK , starting from their analysis and without
any prior knowledge on the original content X. Aligning a set
of sequences consists in finding the starting times t1, . . . , tK ,
up to an additive constant. To this purpose, we assume that at
least a minimum number of ND video pairs (Yi,Yj) share a
temporal overlap. For example in Figure 1 the sequence Y1

does not share any temporal overlap with Y2, but the sequence
Y3 partially overlaps with both Y1 and Y2. It is therefore
possible to align the three of them, even though not all of them
have some frames in common. Anyway, if additional overlaps
occur (e.g., between Y1 and Y2), redundant information is
available. It is therefore possible to exploit it for even more
robust global alignment estimation.

As a matter of fact, given a pool of overlapping ND
sequences, it is possible to detect pairs of videos (Yi,Yj)
that share common frames (as in [13]) and estimate their pair-
wise mutual delay Θ. Then, t values can be reconstructed
by merging Θ estimates. The more the available Θ values,
the better the t estimate. As an example, with reference to
Figure 1, Y1 and Y2 are only linked through Y3. Therefore,
if Θ3,2 is wrongly estimated, the global delay between Y1 and
Y2 cannot be correctly computed. Conversely, if an additional
overlap between Y1 and Y2 would be present, Θ1,2 could
be computed. By exploiting both Θ3,2 and Θ1,2 values, it is
possible to reduce the effect of the wrong Θ3,2 estimate in
computing the global delay between Y1 and Y2.

In the next section, we present all the steps of the proposed
alignment algorithm that exploits data redundancy being com-
putationally efficient, thus suitable for phylogeny applications.

. . .  

. . .  

i = 1, j = 2

i = 1, j = 3

i = K � 1, j = K
⇥̂K�1,K

pair-wise alignment

arg min
↵,�,⇥

1

|N |
X

n2N
|li(n) � ↵ lj(n �⇥) + �|2

{l1, . . . , lK}

{Y1, . . . ,YK} global alignment

D†⇥̂
t̂

⇥̂1,2

⇥̂1,3

⇥̂i,j
refinement

t̂

. . .  

. . .  

luminance
di↵erence

(li, lj)

Fig. 2: Diagram of the proposed system.

III. ALIGNMENT ALGORITHM

To deal with the aforementioned problem of video temporal
alignment we propose an algorithm divided in four basic steps
as depicted in Figure 2: (i) each video is represented over time
as a monodimensional signal; (ii) pair-wise alignments Θi,j

are estimated by comparing video monodimensional represen-
tations; (iii) global alignment tk of each sequence is estimated
combining all the available pair-wise Θi,j alignments; (iv)
a final refinement step is applied to remove the effect of
possible outlier measurements Θi,j . In the following, a detailed
description of each step is given.

A. Monodimensional descriptors

In order to compare pairs of sequences within a pool of
K near-duplicate videos Y1, . . . ,YK in a computationally
efficient way, we resort to a monodimensional description of a
video over time, as suggested in [21]. More specifically, given
an arbitrary video sequence Yi, we compute the difference
between the average luminance of adjacent frames as

li(n) = avgluma(Yi(n))− avgluma(Yi(n− 1)), (2)

where avgluma(·) extracts the average of the luminance com-
ponent of a frame, and Yi(n) is the n-th frame of sequence
Yi.

B. Pair-wise alignment

Given two partially overlapped near-duplicate videos Yi

and Yj , we seek the temporal shift Θi,j between Yi and
Yj by comparing their monodimensional descriptors li and
lj , built as in (2). In particular we find the pair-wise temporal
alignment between Yi and Yj by minimising a cost function.
More formally, we compute

Θ̂i,j = arg min
α,β,Θ

1

|N |
∑

n∈N
|li(n)− α · lj(n−Θ) + β|2 , (3)

where N is the set of time lags that ensure overlap between
li and lj delayed by Θ, |N | denotes its cardinality, α is a
scaling factor and β accounts for possible luminance shifts.
The minimisation is carried out on the tuple (α, β,Θ). It is
worth noticing that Θ can only assume a finite set of integer
values. Indeed, time-shifts are measured in frames (integer
values) and the two shifted sequences must overlap.



The proposed solution can be interpreted as an enhanced
version of the one presented in [13]. As a matter of fact, in
[13] the temporal alignment is estimated by looking at the
position of the highest peak of the cross-correlation between
li and lj , which does not take into account neither α, not β.

C. Global alignment

At this point in the algorithm, given the set
{Θ̂i,j}i,j=1,...,K, i6=j , of pair-wise alignment measurements,
we estimate the starting times t1, . . . , tK of Y1, . . . ,YK on a
common timeline. To this purpose, we exploit the relationship
between Θ and t values expressed by (1), which can be
expressed in matricial form as


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or Θ = Dt.

(4)

More specifically, as we do not know the true Θ values, but
only their estimates Θ̂, our model becomes

Θ̂ = Dt + e, (5)

where e denotes a noise term accounting for Θ measurement
errors. Depending on hypothesis on the error e, there are
several ways to estimate t from the knowledge of Θ̂ and D.
As we seek for a fast solution, we formulate our estimation
problem in terms of least squares (LS). This means that the
estimated t is obtained solving

t̂ = arg min
t∈RK

‖Dt− Θ̂‖2, (6)

whose solution is known to be in closed-form.
As the matrix D is rank deficient with rank(D) = K − 1

[22], the LS problem is solved exploiting singular value
decomposition (SVD). To this purpose, let D = UΣVT be
the SVD of D. The LS solution of (6) is

t̂ = D†Θ̂ = V1Σ
−1
1 UT

1 Θ̂, (7)

where D† denotes the Moore-Penrose pseudoinverse of D, Σ1

is the square submatrix of Σ containing the K − 1 positive
singular values, and U1 and V1 are the first K − 1 columns
of U and V, respectively.

Because of the rank-deficiency of D, the found solution t̂
is non-unique. It is indeed quite evident that a constant can be
added to each of the elements of the vector t̂ of starting times
without changing the vector of pair-wise overlaps Θ̂. As a
matter of fact, all possible solutions up to an additive constant
are equivalent for our problem, as stated in Section II. As a
convention, we decided to set the first value of t̂ to zero, by
subtracting t̂1 to all the elements of t̂. Also notice that, as
values of t̂ must be integer numbers (delay is measured in
frames), we apply a rounding operation to t̂.

As a final remark, also notice that not all the sequences in
the near-duplicates set may overlap (as it was for Y1 and Y2

in Figure 1). This means that only a subset of all the possible
Θ̂i,j may be available. Nonetheless, the t̂ estimation procedure
remains exactly the same, just removing from D all the rows
corresponding to missing Θ̂i,j values.

D. Outlier removal

The LS procedure described above allows to estimate t̂ from
Θ̂. However, Θ̂ may contain some outlier measurements Θ̂i,j

due to incorrect pair-wise alignment estimations. In this case,
it would be preferable to remove outliers before t̂ estimation.

To this purpose, we propose two possible outlier removal
procedures. They both start with the computation of the LS
residual of each measurement as

r = Θ̂−Dt̂, (8)

where each element ri,j of r basically measures how well each
Θ̂i,j fits the found LS solution. As a matter of fact, in case of
noiseless measurements, r = 0. On the contrary, outlier Θ̂i,j

exhibit high ri,j values.
LS-driven minimum-spanning tree. The first outlier removal

procedure consists in making use of ri,j as confidence values
associated to each Θ̂i,j . Formally, we build a graph where each
node represents a video sequence Yi, and each edge from Yi

to Yj has weight ri,j . If two sequences do not overlap, no
direct edge links them. We then run minimum-spanning tree
algorithm on this graph to find the path at minimum cost that
links each Yi to each Yj . The t̂ values can than be computed
summing Θ̂i,j values on the path linking Yi to Yj .

Robust LS. Another possible procedure to detect outliers
consists in comparing the standard deviation σr of r elements
with a threshold Γr. Formally, we compute

σr =

√
1

|r|
∑

ri,j∈r
(ri,j − µr)2, (9)

where µr is the average value of elements in r and |r| is the
number of elements in r. If σr ≥ Γr, we apply the refinement
procedure. We select the highest ri,j element, and remove
the associated Θ̂i,j from Θ̂. We then estimate t̂ again using
the refined measurements, and iterate the overall refinement
procedure until σr < Γr, or the minimum number of Θ̂i,j to
solve the LS problem is reached. The final estimation of t̂ is
kept as solution.

IV. RESULTS

In order to validate the proposed alignment algorithm, we
built a dataset of 2100 near-duplicate videos. These have
been generated starting from 7 well-known original video
sequences, namely: city, crew, foreman, mobile, mother, paris,
and sign Irene . These videos at CIF resolution (i.e., 352×288
pixels) range from 300 to 540 frames each. From each original
sequence we created 30 different realisations of misaligned
near-duplicates. Each realisation is composed by 10 mis-
aligned ND videos generated by randomly applying transfor-
mations listed in Table I to the original sequence. ND videos
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TABLE I: Parameters of transformations.

Transformation Range
Gaussian blurring std. dev. = [2,8]
Logo addition area = [3%, 7%]
Global scaling [90%,110%]
Cropping [0%,5%]
Contrast adjustment [-10%,10%]
Brightness adjustment [-10%,10%]
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Fig. 3: Alignment error on video pairs using our method (CostFun)
and the baseline (Corr).

in each realisation have been temporally trimmed in order to
obtain a random misalignment among them. Algorithms have
been evaluated both pair-wise and globally aligning the 10
near-duplicate videos in each of the 30×7 = 210 realisations.

It is worth noting that temporal trimming has been applied
paying attention to the number of sequences sharing over-
lapped frames. As a matter of fact, in the easiest scenario,
all the 10 videos in a realisation share some frames, thus
providing 45 measurements Θ̂i,j (i.e., one for each video pair).
However, we considered the more difficult case in which only
a limited set of sequences share some frames. In particular,
we considered realisations in which up to 32 video pairs (over
45) do not share any frame. Temporally overlapping sequences
share at minimum 50 frames (i.e., less then 2 seconds).

A. Pair-wise alignment evaluation

In order to evaluate the accuracy of the proposed method
in estimating the pair-wise misalignment Θ̂i,j , we computed
the monodimensional descriptor of each video as in (2) and
applied (3) to all the overlapping ND videos. For rapidly
minimising (3), we normalized each l(n) to have zero mean
and unitary standard deviation. This allowed us to constrain
α ∈ [0.8, 2.5] and β ∈ [−1, 1], thus shrinking the search space.
For comparison, we also estimated Θ̂i,j using as baseline the
cross-correlation-based method reported in [13].

Figure 3 shows the percentage of pair-wise alignment errors
using the proposed method based on cost-function minimisa-
tion (CostFun), and using the baseline method (Corr). More
specifically, we considered as errors all the measured Θ̂i,j that
differ from the correct value Θi,j for a fixed number of toler-
ance frames. It is possible to see that, if the tolerance is set to 0
(i.e., we only consider as correct estimations Θ̂i,j = Θi,j), our
method wrongly estimates the misalignment on approximately
1% of the sequences, whereas the baseline wrongly estimates
the misalignment in the 6% of the cases. Even if we consider a
tolerance of 40 frames (i.e., we consider as correct estimations
all the Θ̂i,j that verify |Θ̂i,j−Θi,j | < 40), the baseline method
has an error percentage higher than 4%, whereas our method

0 1 2 3 4 5 6 7 8 9 10

<e

0

10

20

R
M

S
E

DFS

SpanTree

LS

LS-SpanTree

Rob-LS

(a)

0 1 2 3 4 5 6 7 8 9 10

N. outliers

0

5

10

R
M

S
E

DFS

SpanTree

LS

LS-SpanTree

Rob-LS

(b)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

!o

0

5

10

R
M

S
E

DFS

SpanTree

LS

LS-SpanTree

Rob-LS

(c)

Fig. 4: RMSE in presence of additive noise and outliers on Θ̂: (a)
no outliers; (b) σe = 0.5 and Γo = 20; (c) σe = 0.5 and 6 outliers.

wrongly estimates the misalignment in only approximately the
0.5% of the cases.

B. Global alignment evaluation

In order to evaluate the global alignment methodology,
we compared our methods with other possible solutions. To
this purpose we selected the baseline depth-first search (DFS)
used in [13]. Moreover, we considered a baseline minimum-
spanning tree solution (Span). This is motivated by the fact
that in [19] the authors make use of minimum-spanning
tree algorithms to estimate t values from Θ̂ ones for event
retrieval. However, as the complete algorithm would be too
computationally expensive, we decided to simplify it. More
specifically, we opt for a faster solution whose weights are
based on the number of overlapping frames between sequence
pairs. The rationale is that, the more the overlapping frames,
the more robust the estimate of Θ̂i,j .

Regarding our proposed methods, we denoted as: (i) LS
the least-squares inversion without outlier-removal refinement;
(ii) LS-Span the refinement procedure based on minimum-
spanning tree driven by LS residuals; (iii) Rob-LS the refine-
ment procedure that discards measurements according to the
LS residuals standard deviation.

First, we conducted a simulative campaign to assess the
behaviour of the algorithms under different perturbation con-
ditions. To this purpose, we corrupted the noiseless ground-
truth values Θi,j from our video dataset with additive i.i.d
zero-mean Gaussian noise with standard deviation σe and the
presence of outliers. Outliers were modelled as noise samples
belonging to a Guassian distribution with standard deviation
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TABLE II: Global alignment error on ND video sequences. Best
results for each evaluation metric are reported in bold.

Baseline Proposed
DFS SpanTree LS LS-Span Rob-LS

RMSE 8.42 4.27 3.84 2.98 2.79
µerr 6.04 2.58 2.75 2.02 1.98
σerr 5.89 3.38 2.55 2.06 1.85

Γo · σe (i.e., Γo times greater than the additive noise one).
As evaluation metrics we used the error bias, error standard
deviation and the root-mean-square error (RMSE) defined as

µerr = E[t̂− t],
σerr = E[(t̂− t− µerr)

2],

RMSE =

√
E[(t̂− t)2],

(10)

where E[·] expresses the average over all the estimations.
Figure 4(a) shows the RMSE for different additive noise

standard deviations σe when no outliers are present. From
these results it is evident that the two baseline procedures
perform worse than the proposed ones. Moreover, as no
outliers have been added, the best solution is to use LS which
exploits all the measurements at best.

Figure 4(b) shows the RMSE for different number of
outliers, when the noise standard deviation has been fixed
to σe = 0.5 and Γo = 20. In this situation, it is clear that
LS starts suffering from the presence of the outliers. On the
other hand, the proposed refinement strategies LS-Span and
Rob-LS outperforms all the other methods.

Finally, Figure 4(c) shows the RMSE when changing the
“strength” of the outliers Γo, while keeping fixed σe = 0.5
and the number of outliers to 6. Also these results confirm
that the proposed refinement procedures outperforms the other
strategies, guaranteeing an RMSE less than 3 frames.

In order to validate the whole system, we evaluated the
global alignment strategies using Θ̂ values extracted using (3)
on the built near-duplicate video dataset. Results are shown
in Table II. It is evident that baseline solutions have worse
performances. Among the proposed ones, as expected, the re-
finement methods outperforms LS. More specifically, Rob-LS
shows better performances than all the other solutions.

V. CONCLUSIONS

In this paper we faced the problem of multiple near-
duplicate video alignment. To this purpose, we developed
an algorithm that considers a pool of near-duplicate videos,
estimates their pair-wise temporal misalignment, and finally
globally aligns all of them. The proposed procedure also
embeds the possibility of detecting outliers and discard them
to reliably estimate the global alignment in two different ways.
Reduced computational complexity enables this algorithm to
be used for video phylogeny analysis.

The conducted experimental campaign proved the validity
of the proposed methodology in different conditions, consider-
ing both simulated data and real video sequences. Future works
will be devoted to the development of statistically motivated
methods for outlier detection, and to testing in real-world
scenarios.
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