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Abstract—In this paper, we present a convex-analytic approach
to supervised nonnegative matrix factorization (SNMF) based
on the Dual-Itakura-Saito (Dual-IS) and Kullback-Leibler (KL)
divergences for music transcription. The Dual-IS and KL diver-
gences define convex fidelity functions, whereas the IS divergence
defines a nonconvex one. The SNMF problem is formulated as
minimizing the divergence-based fidelity function penalized by
the ℓ1 and row-block ℓ1 norms subject to the nonnegativity
constraint. Simulation results show that (i) the use of the Dual-IS
and KL divergences yields better performance than the squared
Euclidean distance and that (ii) the use of the Dual-IS divergence
prevents from false alarms efficiently.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) is an attractive

approach to separating a nonnegative matrix into a product

of two nonnegative matrices [1]–[3]. In NMF, many diver-

gence measures have been presented [4], [5]. For the musical

instrument classification, it has been shown experimentally

that a use of the Kullback-Leibler (KL) divergence tends

to give better performance compared to the squared Eu-

clidean distance or the Itakura-Saito (IS) divergence [6], [7].

Although the unsupervised NMF approaches have no need

to prepare dictionaries, those approaches need to estimate

the number of sources prior to factorization, and a failure

in the estimation causes severe performance deterioration in

general. The supervised NMF (SNMF) approaches [8]–[10]

are advantageous from this aspect since the source number is

not explicitly used subject to the availability of a dictionary

matrix. In music applications, for instance, this is a practical

assumption because there exist many music databases available

to construct a dictionary. In particular, in [9], the SNMF

problem is formulated as a sparse optimization problem, where

the task is to find an appropriate activation matrix that is row-

sparse (as well as sparse componentwise). An iterative method

based on convex analysis has been presented therein to solve

the sparse optimization problem. So far, the squared Euclidean

distance has solely been employed as a measure of data fidelity

in this convex-analytic approach.

In this paper, we investigate a use of the KL and Dual-

Itakura-Saito (Dual-IS) divergences. Here, both divergences

define convex fidelity functions, whereas the IS divergence

defines a nonconvex one. Our optimization problem to solve

for SNMF involves two sparsity-promoting non-differentiable

regularizers (the ℓ1 and row-block ℓ1 norms) in addition to

the fidelity function and the nonnegativity constraint. We

TABLE I
SPECIAL CASES OF THE GENERALIZED ALPHA-BETA DIVERGENCE

α β d
(α,β)
AB (y | ŷ)

1 1 Squared Euclidean distance dEUC(y | ŷ)
1 0 KL divergence dKL(y | ŷ)
1 −1 IS divergence dIS(y | ŷ)
0 1 Dual KL divergence ddKL(y | ŷ)
−1 1 Dual IS divergence ddIS(y | ŷ)

apply the alternating direction method of multipliers (ADMM)

[11] to this problem after a certain reformulation. Simulation

results show that the proposed approach exhibits excellent

performance both in the F-measure and the total error. It turns

out, in particular, that the small total errors of the Dual-IS

divergence come from the prevention of false alarms.

II. GENERALIZED ALPHA-BETA DIVERGENCE WITH

PARTICULAR EXAMPLES

For a given y > 0 and a variable ŷ, the squared Euclidean

distance, the KL divergence, and the IS divergence are defined

respectively as

dEUC(y | ŷ) :=
1

2
(y − ŷ)2, (1)

dKL(y | ŷ) := ylog
y

ŷ
− y + ŷ, (2)

dIS(y | ŷ) :=
y

ŷ
− log

y

ŷ
− 1. (3)

The generalized Alpha-Beta divergence d
(α,β)
AB (y | ŷ), α, β ∈ R

is presented in [4]. It includes the squared Euclidean distance,

the KL and IS divergences, and their duals [12]

ddKL(y | ŷ) := dKL(ŷ | y), (4)

ddIS(y | ŷ) := dIS(ŷ | y), (5)

as its particular cases. Note here that the KL and IS diver-

gences are asymmetric.

For the musical instrument classification, it has been re-

ported that a use of the KL divergence tends to give better

performance compared to the squared Euclidean distance and

the IS divergence [6], [7]. It is well known that the fidelity

functions based on the squared Euclidean distance and the

KL divergence are proximable (i.e., their proximity operators

can be computed easily). See, e.g., [13]. Indeed, the fidelity

function based on the Dual-IS divergence is also proximable,

as shown in Section III. No special attention has, however,

been paid to the Dual-IS divergence so far.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1138



Fig. 1. Illustrations of the squared Euclidean distance and the KL and Dual-IS
divergences for y = 0.5.

(a) Squared Euclidean distance

(b) Dual-IS (preventing from a false alarm for F6)

Fig. 2. Factorization results based on the Dual-IS divergence and the squared
Euclidean distance.

Our focus in the present study is on the KL and Dual-IS

divergences.1 Fig. 1 illustrates the squared Euclidean distance

and the KL and Dual-IS divergences as a function of ŷ for

given y. It is seen that the acceptable error range of the Dual-

IS divergence is the narrowest among the three curves for

y = 0.5. (In the figure, the acceptable error range of the

Dual-IS divergence is indicated by the bidirectional arrows

for the threshold 0.1.) The difference among the three curves

becomes larger as y decreases to zero. This implies that the

Dual-IS divergence in the SNMF attempts to find from a fixed

dictionary a vector that well resembles the coefficients of small

amplitudes for each column of the input matrix.

Fig. 2 illustrates how a column yn of the input matrix Y

is factorized. In the case of the squared Euclidean distance,

although yn does not contain the F6 pitch, the coefficient of

F6 is large enough to cause a false alarm. This is because the

squared Euclidean distance becomes small when the peak is

accurately approximated (see the blue circle in Fig.2(a)). In

contrast, the Dual-IS divergence correctly suppresses the F6

pitch, because allocating a large coefficient to F6 yields some

1The proximity operator of the fidelity function based on the Dual-KL
divergence is known to be expressed by using the Lambert W-function [13],
[14]. We do not consider the Dual-KL divergence in the present study.

TABLE II
PROXIMITY OPERATORS OF THE DUAL-IS DIVERGENCE, THE KL

DIVERGENCE, AND THE SQUARED EUCLIDEAN DISTANCE.

φ(x) proxγφx

ddIS(y |x) p > 0 s.t. p2 + (γy−1 − x)p = γ

dKL(y |x) p > 0 s.t. p2 + (γ − x)p = γy

dEUC(y |x) p = 1+γ−1

y+xγ−1

errors on the small components of yn (see the red circles in

Fig.2(b)) and such errors on the coefficients of small amplitude

increase the Dual-IS divergence. This property of the Dual-IS

divergence actually leads to considerable reductions of false

alarms in music transcriptions.

III. PROXIMITY OPERATOR OF DUAL-IS DIVERGENCE

Fix y > 0 arbitrarily in d
(α,β)
AB (y | x) and define the fidelity

function φα,β : R → [0,∞] as

φα,β(x) :=

{

d
(α,β)
AB (y | x) ∈ [0,∞) if x > 0,

+∞ if x ≤ 0.
(6)

Let φ := φ−1,1, which is based on the Dual-IS divergence

(see Table I). The proximity operator of φ of index γ > 0 is

defined as follows [13]:

proxγφx := argmin
p∈R

(

φ(p) +
1

2γ
(x− p)2

)

.

︸ ︷︷ ︸

=:F1(p)

(7)

Here, the proximity operator of φ is well defined because

φ is proper, lower semi-continuous, and convex.2 Since the

function F1(p) is strictly convex and also differentiable over

(0,∞), proxγφx can be characterized by ∂
∂p

F1(p) = 0 for

p > 0, from which it follows that

proxγφx =
{
p > 0 | p2 + (γy−1 − x)p = γ

}
. (8)

Since F2(p) := p2 + (γy−1 − x)p− γ is convex and F2(0) =
−γ < 0, the quadratic equation F2(p) = 0 has a unique

positive solution. Table II summarizes the proximity operators

of the fidelity functions based on the Dual-IS divergence, the

KL divergence, and the squared Euclidean distance.

IV. PROPOSED METHOD

A. Problem formulation

Let R+ be the set of nonnegative real numbers. We consider

the SNMF problem: given a data matrix Y ∈ R
M×N
+ to be

factorized and a redundant dictionary matrix W ∈ R
M×L
+ ,

find H ∈ C := R
L×N
+ such that Y ≈ WH . Here, W is

assumed to have full column-rank. We formulate the SNMF

2Let X be a real Hilbert space. A function f : X → (−∞,∞] is called
proper, if domf := {x ∈ X | f(x) < ∞} 6= ∅. If the level set lev≤af :=
{x ∈ X | f(x) ≤ a} is closed for any a∈R, then f is called lower semi-

continuous. If f(ηx+ (1− η)y) ≤ ηf(x) + (1− η)f(y) for any x, y ∈ X
and η ∈ (0, 1), then f is called convex.
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problem as the following convex optimization problem in

H := R
L×N :

(P0) min
H∈H

λ1

L∑

l=1

∥
∥
∥h

T

l

∥
∥
∥
2

︸ ︷︷ ︸

=:g1(H)

+λ2

L∑

l=1

N∑

n=1

| hl,n |

︸ ︷︷ ︸

=:g2(H)

+ iC(H)
︸ ︷︷ ︸

=:g3(H)

+D
(α,β)
AB (Y | WH)

︸ ︷︷ ︸

=:g4(WH)

,

where hT

l denotes the l th row vector of the matrix H , g1(H)
is the row-block ℓ1 norm with the ℓ2 norm ‖·‖2, g2(H) is the

ℓ1 norm with the (l, n) entry hl,n of H ,

g3(H) := iC(H) :=

{

0 if H ∈ C,

+∞ otherwise,
(9)

is the indicator function to enforce the matrix H to be non-

negative, and g4(WH):=D
(α,β)
AB (Y |WH) :=

∑M
m=1

∑N
n=1

d
(α,β)
AB (ym,n | [WH]m,n). Here, ym,n (or [WH]m,n) is the

(m,n) entry of Y (or WH). The function g4 is proximable

in the cases of α = −1, β = 1 (the Dual-IS divergence),

α = 1, β = 0 (the KL divergence), and α = 1, β = 1
(the squared Euclidean distance). In all cases, the function

is convex (see Section III and the reference [4]).

We shall reformulate (P0) into a tractable convex optimiza-

tion problem in the large space H̃ := R
4L×N . For any matrix

Ã ∈ H̃ and for any (3L + M) × N matrix B, we denote

by Ã
(1)

, Ã
(2)

, Ã
(3)

, Ã
(4)

∈ H, B(1),B(2),B(3) ∈ H, and

B(4) ∈ R
M×N their partitioned submatrices such that

Ã=









Ã
(1)

Ã
(2)

Ã
(3)

Ã
(4)









∈ H̃, B=







B(1)

B(2)

B(3)

B(4)






∈ R

(3L+M)×N . (10)

The problem (P0) can be reformulated equivalently as follows:

(P1) min
H̃∈H̃

3∑

q=1

gq(H̃
(q)

) + g4(WH̃
(4)

)

s.t. H̃
(1)

= H̃
(2)

= H̃
(3)

= H̃
(4)

. (11)

Here, the linear constraints in (11) can be expressed as

H̃ ∈ M :=
{[

HT HT HT HT
]T

∈H̃ | H ∈ H
}

. (12)

The problem (P1) can therefore be reformulated equivalently

as follows:

(P2) min
H̃∈H̃

iM(H̃) + g(GH̃), (13)

where iM(·) is the indicator function defined as in (9),

G := diag(I, I, I,W )∈R
(3L+M)×4L
+ (14)

TABLE III
ADMM TO SOLVE (P2)

Requirement: γ > 0

Initialization: Q0,R0 such that Q0−R0∈R
(3L+M)×N
+

For k = 0, 1, 2...












(a) H̃k =argmin
Z̃∈H̃

[

iM(Z̃)+
1

2γ

∥

∥

∥
GZ̃−(Qk−Rk)

∥

∥

∥

2

F

]

(b) Qk+1= proxγg(GH̃k +Rk)

(c) Rk+1 = Rk +GH̃k −Qk+1

‖·‖F denotes the Frobenius norm.

is the block diagonal matrix whose block-diagonal entries are

given by I, I, I, and W , where I is the L×L identity matrix,

and

g(GH̃) :=

3∑

q=1

gq(H̃
(q)

) + g4(WH̃
(4)

). (15)

As both functions iM and g are proximable, (P2) can be solved

by ADMM, which is presented in the following subsection.

B. ADMM for Problem (P2)

The ADMM algorithm to solve (P2) is presented in Table

III. Note that H̃k in the table is well-defined since the

minimizer is unique due to the strict convexity of the quadratic

term, which can be verified by the nonsingularity of W TW .

Steps (a) and (b) are elaborated below.

(a) Due to the presence of iM(Z̃), it is guaranteed that

Z̃
(1)

= Z̃
(2)

= Z̃
(3)

= Z̃
(4)

∈ H. Hence, it can be verified

that H̃
T

k =
[

H̃
T

∗ H̃
T

∗ H̃
T

∗ H̃
T

∗

]

with

H̃∗ := (3I +W TW )−1

×

[
3∑

q=1

(Qk−Rk)
(q)+W T(Qk−Rk)

(4)

]

. (16)

(b) Let S := GH̃k +Rk ∈ R
(3L+M)×N . Each submatrix of

Qk+1 is then given as follows (see (10)):

Q
(1)
k+1= proxγg1(S

(1))

=

L∑

l=1

max






1−

λ1γ
∥
∥
∥s

(1)
l

∥
∥
∥
2

, 0






els

(1)
l

T

,

Q
(2)
k+1= proxγg2(S

(2))

=
L∑

l=1

N∑

n=1

sgn(s
(2)
l,n)max

{

|s
(2)
l,n |−λ2γ,0

}

El,n,

Q
(3)
k+1= proxγg3(S

(3)) = PC(S
(3))

=








max
{

s
(3)
1,1, 0

}

· · ·max
{

s
(3)
1,N , 0

}

...
. . .

...

max
{

s
(3)
L,1, 0

}

· · ·max
{

s
(3)
L,N , 0

}







,
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Q
(4)
k+1= proxγg4(S

(4))

=







1

2

M∑

m=1

N∑

n=1

[

−
γ

ym,n

+ s(4)m,n

+

√
(

γ

ym,n

−s
(4)
m,n

)2

+4γ

]

Em,n, (Dual-IS)

1

2

M∑

m=1

N∑

n=1

[

− γ + s(4)m,n

+

√
(

γ−s
(4)
m,n

)2

+4γym,n

]

Em,n. (KL)

Here, S(1) = [s
(1)
1 s

(1)
2 ... s

(1)
L ]T, {el}

L
l=1 denotes the standard

basis of RL, s
(q)
l,n denotes the (l, n) entry of S(q),

sgn(s
(2)
l,n) :=







s
(2)
l,n/

∣
∣
∣s

(2)
l,n

∣
∣
∣ if s

(2)
l,n 6= 0,

0 if s
(2)
l,n = 0,

(17)

is the signum function, El,n (or Em,n) is the L × N (or

M × N ) matrix that has one at the (l, n) position (or the

(m,n) position) and zeros elsewhere.

A remarkable advantage of the convex analytic approach is

the guarantee of the global convergence. Indeed, a qualification

condition3 (to guarantee the convergence) [16]

int(dom g) ∩G(dom iM) 6= ∅ (18)

is satisfied as shown below. Here,

int(dom g) = H×H× C̃ × R
M×N (19)

is the interior of dom g (the domain of g) with C̃ := int(C),
and

G(dom iM) = G(M) := {GH̃ | H̃ ∈ M}

=
{[

HT HT HT (WH)T
]T
|H ∈ H

}

. (20)

Hence, it follows that

(18) ⇔ C̃ × C̃ × C̃ ×W (C̃) 6= ∅

⇔ C̃ 6= ∅. (21)

The set C̃ of positive-valued matrices is clearly nonempty,

which verifies (18).

V. SIMULATION RESULTS

A. Simulation Conditions

We show the efficacy of the proposed approach for music

transcription. We compose four different patterns (A–D) by

using several tones from RWC music database [17]. The

input matrix Y for each pattern is the magnitude spectrogram

computed by the short-time Fourier transform (STFT) using

a Hamming window of length 23 ms with 50% overlap. The

columns of the basis matrix W are composed of piano sounds

of 88 pitches, and are computed by STFT in the same way as

for the input matrix.

3The qualification condition (18) can be weakened by using the concept of
relative interiors [13], [15].

TABLE IV
THE NUMBER OF SOURCES, DURATION, AND PARAMETER SETTINGS.

#sources duration
Proposed- Proposed- GFBS-

Dual-IS KL EUC

pattern A 4 13 sec.
λ1 0.93 0.93 150

λ2 0.43 0.95 25

pattern B 4 15 sec.
λ1 0.97 1.0 150

λ2 0.49 0.38 25

pattern C 4 23 sec.
λ1 0.73 0.76 150

λ2 0.97 0.77 10

pattern D 3 23 sec.
λ1 0.75 0.98 150

λ2 0.92 0.98 20

TABLE V
THE EVALUATION RESULTS IN THE F-MEASURE, THE TOTAL ERROR, AND

THE FALSE ALARMS.

Proposed- Proposed- GFBS- BND-

Dual-IS KL EUC KL

pattern A

F 95.5 94.2 88.5 91.5

Etot 8.35 10.8 21.0 16.0

Efals 1.60 5.68 2.49 9.59

pattern B

F 88.3 92.3 85.5 91.4

Etot 21.2 15.0 26.5 17

Efals 0.88 6.84 4.64 9.49

pattern C

F 93.7 92.0 85.1 90.7

Etot 12.2 15.2 27.0 17.5

Efals 2.72 3.13 4.44 3.45

pattern D

F 94.6 94.5 87.2 91.6

Etot 10.4 10.5 23.4 16.1

Efals 1.61 2.6 3.1 4.71

We compare the proposed method with (i) the generalized

forward-backward splitting method to solve the problem (P0)

with the squared Euclidean distance in [9] (GFBS-EUC), and

(ii) the multiplicative algorithm to solve the SNMF with the

KL divergence (BND-KL) [18]. For each algorithm, the output

matrix is binarized with the threshold 5% of the maximum

value of the output matrix.

B. Results and Discussion

All algorithms are run for 300 iterations for γ := 10. The

parameters of each algorithm are chosen to attain the best

performance in total errors. Table IV shows the number of

sources existing in each pattern and the parameters of each

algorithm. Table V summarizes the results in the standard

evaluation metrics (see [19]). It can be seen that, the Dual-IS

divergence gives the best performance in the total errors for

patterns A, C, and D, while the KL divergence does for pattern

B. It should be remarked that the Dual-IS divergence achieves

the smallest scores in false alarms for all patterns at the

expense of some increases of missed errors (i.e., Etot −Efals).
To show that the use of the Dual-IS divergence leads to the

prevention of the false alarms, we plot in Fig. 3 the resulting

H for pattern B, highlighting the C2 – C6 pitches. In the

figures, the false alarms are marked by “x” in red color, the

missed errors are plotted in green color; the blue lines indicate

that the true pitches are correctly detected. One can see that

the proposed algorithm contains only a few false alarms. This

verifies the small errors of the Dual-IS divergence in false

alarms. If one tries to reduce the false alarms in Proposed-KL

or GFBS-EUC by tuning the threshold, the total errors will be

increased considerably. This implies that the use of the Dual-

IS divergence is a reasonable way to prevent from the false

alarms.
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Fig. 3. Simulation results for pattern B.

VI. CONCLUSION

We have studied the use of the Dual-IS and KL divergences

in SNMF. The proximity operator of the fidelity function based

on the Dual-IS divergence has been derived. The problem has

been formulated as a minimization problem of the divergence-

based fidelity function penalized by the three terms: the ℓ1
norm, the row-block ℓ1 norms, and the indicator function

to enforce the nonnegativity. ADMM has been applied to

the problem reformulated in the large Euclidean space. The

simulation results have demonstrated that (i) the use of the

Dual-IS and KL divergences yields better performance than

the squared Euclidean distance, and that (ii) the use of the

Dual-IS divergence prevents from the false alarms.
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