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Abstract—Wavelet-OFDM based on the discrete wavelet trans-

form is a multicarrier modulation technique of considerable

interest, due to its good performance in several respects such as

the peak-to-average power ratio and the interference cancellation,

as investigated in the literature. More specifically, the Haar

wavelet has been proposed by various researchers as the most

attractive wavelet for data transmission. In this paper, we address

the power spectral density limitations of Wavelet-OFDM, and

we show analytically and experimentally that the bandwidth

efficiency of Haar Wavelet-OFDM is significantly poorer than

OFDM, having larger main lobe and side lobes compared with

OFDM, which reduces the attractiveness of the scheme.

Keywords—Wavelet-OFDM, Orthogonal Frequency Division
Multiplexing (OFDM), Haar wavelet, Discrete Wavelet Transform
(DWT), Power Spectral Density (PSD).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
a very popular modulation technique used in many wireless
and wireline communication standards, thanks to its high
spectral efficiency and its ability to overcome the effects
of multipath channels. However, OFDM suffers from some
drawbacks such as high peak-to-average power ratio (PAPR),
and sensitivity to carrier frequency offset and synchronisation
errors. To counter these disadvantages, much research has been
conducted in order to design new multi-carrier modulation
(MCM) systems as alternatives to OFDM. In this context,
Wavelet-OFDM [1], also known as orthogonal wavelet division
multiplexing (OWDM) [2], has been proposed and promoted
by many authors. Wavelet-OFDM modulation is based on
the inverse discrete wavelet transform (IDWT) instead of
the inverse discrete Fourier transform (IDFT) as for OFDM.
In [3], the authors claim that the Haar and the Daubechies
wavelets outperform conventional OFDM in reducing inter-
symbol interference and inter-carrier interference in the power
line communication context. According to [4] and [5], the Haar
wavelet outperforms OFDM and the other wavelets in terms
of bit error rate. The Haar wavelet has been also presented as
the wavelet that gives the best PAPR performance [6], [5] and
the lowest computation complexity [7].

However, the bandwidth efficiency of Wavelet-OFDM has
been rarely addressed in the literature. The common belief
is that Wavelet-OFDM improves the bandwidth efficiency

compared with OFDM, since it does not need a cyclic prefix
as stated in many references [5], [7], [8], [9], [10]. However,
there are other factors which may have a more significant effect
on bandwidth efficiency, and this has motivated us to conduct
a more rigorous study of the power spectral density (PSD) of
Wavelet-OFDM, which highlights, as we will see, the cost to
pay for the advantages enumerated above, especially in the
case of the Haar wavelet.

In this paper, we study analytically and experimentally
the PSD of Wavelet-ODFM, and specifically for the Haar
wavelet, since this latter has been promoted in the literature
for its several advantages, but its limitations have rarely been
investigated. We show that the bandwidth efficiency of Haar
Wavelet-OFDM is poorer than conventional OFDM, having
large main lobe and side lobes compared with OFDM. We
also addressed the PSD problem as a serious limitation of the
Wavelet-OFDM, which should be taken carefully in the study
of this new modulation technique.

The paper is organized as follows. Section II defines the
Wavelet-OFDM and its variants. The theoretical analysis of the
PSD is presented in Section III, while Section IV presents the
simulation of the PSD that confirms our analytical result, and
further discussions. The conclusions are drawn in Section V
with some perspectives of the work.

II. DESCRIPTION OF THE WAVELET-OFDM SYSTEM

Notations: The transmitted MCM signal can be expressed
in general as:

x(t) =
∑

n∈Z

M−1∑

m=0

Cm,n gm(t− nT0)
︸ ︷︷ ︸

gm,n(t)

. (1)

M denotes the number of carriers. Cm,n stands for the input
complex symbol, time index n, modulated by carrier index m.
Let us assume that (Cm,n)(m∈[[0,M−1]], n∈Z) are independent
and identically distributed, with zero mean and unit variance
σ2
C . T0 is the duration of M input symbols Cm,n (duration of

the MCM symbol). The modulation transform and the pulse
shaping filter are jointly modeled by a single function denoted
by gm ∈ L2(R) (the space of square integrable functions).
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A. Expression of the transmitted signal

Wavelet-OFDM is an MCM system based on the
Wavelet basis instead of the Fourier basis. The modula-
tion system (gm)m∈[[0,M−1]] is represented by the wavelet
functions (ψj,k)j∈[[J0,J−1],k∈[[0,2j−1]] and the scaling func-
tions (φJ0,k)k∈[[0,2J0−1]] of the first scale. The waveforms

(gm)m∈[[0,M−1]] can be expressed as:

(gm)m∈[[0,M−1]] :=



















(ψJ0,k)k∈[[0,2J0−1]] ∪ (φJ0,k)k∈[[0,2J0−1]],

if m ∈ [[0, 2J0+1 − 1]]

(ψj,k)j∈[[J0,J−1],k∈[[0,2j−1]]

else.

The transmitted Wavelet-OFDM signal is then defined as
follows:

x(t) =
∑

n

J−1
∑

j=J0

2j−1
∑

k=0

wj,kψj,k(t− nT0)

+
∑

n

2J0−1
∑

q=0

aJ0,qφJ0,q(t− nT0). (2)

• J − 1: last scale considered, with M = 2J ,
• J0: first scale considered (J0 ≤ j ≤ J − 1),
• wj,k: wavelet coefficients located at k-th position from the

scale j,
• aJ0,k: approximation coefficients located at k-th position

from the first scale J0,
• ψj,k = 2

j/2ψ(2jt− kT0): the wavelet orthogonal functions,

• φJ0,k = 2
J0
2 φ(2J0t−kT0): the scaling orthogonal functions

at the scale J0.

Note that the wavelet coefficients wj,k and the approximation
coefficients aJ0,k represent the complex input symbols Cm,n
of (1). The mother wavelet function and the mother scaling
function have a duration of T0, and corresponds to j = 0, k =
0. For each scale j corresponds 2j translated wavelet functions.
From one scale to the next, the number of wavelet functions
is then multiplied by two.

B. Variants and implementation

Several variants of the Wavelet-OFDM system can be
considered, depending on the first scale J0 selected. Since
the scaling functions are considered only for the first scale,
J0 then defines the number of the scaling functions φj,k in
the modulation system. Fig.1 depicts the wavelet modulation
system for different values of J0, for M = 8 carriers. By
convention, when J0 = J , there are 2J scaling functions φj,k
and no wavelet function ψj,k considered in the wavelet basis.
Note that the position of the functions in Fig.1 is not a coin-
cidence, but it has an importance since it gives an idea about
the time frequency localization (∆t,∆f) of the waveforms,
which is studied in Section II-C .

In order to implement the Wavelet-OFDM system ex-
pressed in (2), we apply the Mallat algorithm [11]. For a
Wavelet-OFDM signal based on the wavelets of L = J − J0
scales and the scaling functions of the scale J0, the IDWT
should be performed L times. L can be also be interpreted as
the number of decomposition levels. Let Cn be a vector of
M input complex symbols Cm,n. The 2J0 first Cm,n symbols
correspond to the 2J0 scaling coefficients (aJ0,q)q∈[[0,2J0−1]].

Figure 1: Some variants of the Wavelet-OFDM.

The second 2J0 complex symbols corresponds to the wavelet
coefficients (wJ0,k)k∈[[0,2J0−1]] of the first scale J0. First, one

IDWT is performed, which gives in its output 2J0+1 scaling
coefficients. After that, the next 2J0+1 coefficients from the
vector Cn are extracted and considered as wavelet coefficients,
and the second IDWT is performed. The next symbols are
processed in the same way until the last scale j = J − 1 is
reached. The vector Cn can be expressed then as:

Cn = (aJ0,0, aJ0,1, . . . , aJ0,2J0−1)

.(wJ0,0, wJ0,1, . . . , wJ0,2J0−1)

.(wJ0+1,0, wJ0+1,1, . . . , wJ0+1,2J0+1−1)

. . . . .(wj,0, wj,1, . . . , wj,2j−1)

. . . . .(wJ−1,0, wJ−1,1, . . . , wJ−1,2J−1−1). (3)

The symbol . in (3) stands for the concatenation operator.
Fig.2 defines the implementation of one decomposition level
j. According to the Mallat algorithm, the IDWT consists of
upsampling by a factor of two and filtering the approximation
coefficients (scaling coefficients) and the detail coefficients
(wavelet coefficients) respectively by a low-pass f l and a high-
pass fh filter, whose responses are derived from the wavelet
considered.

Figure 2: IDWT implementation

C. Time-Frequency analysis

To characterize the waveform gm in the time and frequency
domain, we usually refer to the first and second moments
in these two dimensions, also known as time mean tgm and
frequency mean fGm

for the first order, and time localization
(TL) and frequency localization (FL) for the second order.
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They are defined as:

tgm =
1

Egm

∫ +∞

−∞
t|gm(t)|2 dt, (4)

fGm =
1

Egm

∫ +∞

−∞
f |Gm(f)|2 df, (5)

∆tgm =

(

4π

Egm

∫ +∞

−∞
(t− tgm)2|gm(t)|2 dt

)1/2

, (6)

∆fGm =

(

4π

Egm

∫ +∞

−∞
(f − fgm)2|Gm(f)|2 df

)1/2

, (7)

such that Egm =

∫ +∞

−∞
|gm(t)|2 dt. (8)

Egm is the normalized energy of the waveform gm, assumed
to be equal to 1 for all the waveforms gm. tgm and fGm

can
be interpreted as the centre of gravity of the waveform gm
in the time domain and frequency domain respectively, or the
averaged normalized time (frequency resp.) centre. We can also
say that the spectrum Gm is localized around the frequency
fGm

. ∆tgm and ∆fGm
can be understood as the duration and

the bandwidth of the waveform gm respectively.

Without loss of generality, let tψ = 0. The first and second
moment of the wavelet functions (ψj,k)j∈[[J0,J−1],k∈[[0,2j−1]]
for the time and frequency domain, are deduced from the
first and second moment of the mother wavelet function ψ
as follows:

tψj,k
= 2−j(tψ + kT0) = 2−j(kT0), (9)

fΨj = 2jfΨ, (10)

∆tψj,k
= 2−j∆tψ, (11)

∆fΨj = 2j∆fΨ. (12)

We can observe that, in the time domain, the wavelets of each
scale are translated in time, and have the same TL. In the
frequency domain, the wavelets of each scale have the same
FL, and then occupy the same bandwidth. From one scale to
the next, the TL is divided by a factor of 2, and the FL is
multiplied by a factor of 2.
The scaling functions (φJ0,k)k∈[[0,2J0−1]] verify the same rela-
tionship with the scaling mother function.

III. PSD ANALYSIS

A. Theoretical analysis of the PSD of Wavelet-OFDM

The Fourier transform of the MCM signal x(t) in (1) is
expressed as follows:

X(ω) =
∑

n

M−1
∑

m=0

Cm,nGm(ω)e−iωnT0 . (13)

Gm(ω) is the Fourier transform of gm(t), and ω = 2πf .

Definition 1. Auto-correlation function

Γx(t, τ) := E(x(t)x̄(t− τ)), (14)

where x̄ is the conjugate of x, and E(.) is the expectation
operator.

Γx(t, τ) =
∑

n,n
′

∑

m,m
′

E(Cm,nC̄m′
,n

′ )gm,n(t)ḡm′
,n

′ (t− τ)

Γx(t, τ) =
∑

n

M−1
∑

m=0

gm(t− nT0)ḡm(t− nT0 − τ). (15)

Definition 2. Auto-correlation mean function

Γ̄x(τ) :=
1

T0

∫ T0

0

Γx(t, τ) dt. (16)

Let g̃m(t) = ḡm(−t)

Γ̄x(τ) =
1

T0

M−1
∑

m=0

∑

n

∫ T0

0

gm(t− nT0)ḡm(t− nT0 − τ)

=
1

T0

M−1
∑

m=0

∑

n

∫ −(n−1)T0

−nT0

gm(t)ḡm(t− τ)

=
1

T0

M−1
∑

m=0

∫ +∞

−∞
gm(t)ḡm(t− τ)

=
1

T0

M−1
∑

m=0

(gm ∗ g̃m)(τ). (17)

Definition 3. Power Spectral Density
The PSD of a cyclostationary process x is defined as

γx(ω) = FT (Γ̄x(τ)), (18)

where FT means the Fourier transform.

γx(ω) = FT (
1

T0

M−1
∑

m=0

(gm ∗ g̃m)(τ))

=
1

T0

M−1
∑

m=0

Gm(ω)Ḡm(ω)

=
1

T0

M−1
∑

m=0

|Gm(ω)|2. (19)

In the case of the Wavelet-OFDM system, let Ψ(ω) and Φ(ω)
be the Fourier transform of ψ(t) and φ(t) respectively. From
(2) and (19), we have:

γxwavelet
(ω) =

1

T0

J−1
∑

j=J0

2j−1
∑

k=0

|Ψj,k(ω)|2 +
1

T0

2J0−1
∑

q=0

|ΦJ0,q(ω)|2.

we have FT (ψj,k) = 2
j
2FT (ψ(2jt− kT0))

FT (ψ(2jt)) =
1

2j
Ψ(

ω

2j
)

FT (ψ(2jt− kT0)) =
1

2j
e
−i ω

2j
kT0Ψ(

ω

2j
). (20)

Similarly for the scaling function, we have

FT (φ(2J0 t− kT0)) =
1

2J0
e
−i ω

2J0
kT0Φ(

ω

2J0
). (21)

Hence

γxwavelet
(ω) =

1

T0

J−1
∑

j=J0

2j−1
∑

k=0

2−j |Ψ(
ω

2j
)|2 + 1

T0

2J0−1
∑

q=0

2−J0 |Φ( ω
2q

)|2

=
1

T0

J−1
∑

j=J0

|Ψj(ω)|2 +
1

T0
|ΦJ0(ω)|2. (22)

Let us now consider the Haar wavelet, which is the oldest
and simplest wavelet, and has a closed form expression in the
time and frequency domain. The mother Haar wavelet and the
mother Haar scaling function are expressed as follows

ψ(t) =











1√
T0

if 0 ≤ t ≤ T0

2

− 1√
T0

if T0

2
≤ t ≤ T0

0 else,

(23)
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φ(t) =

{

1√
T0

if 0 ≤ t ≤ T0

0 else.
(24)

In order to express the PSD of Haar Wavelet-OFDM, let us
first express |Ψ(ω)| and |Φ(ω)|.

Ψ(ω) =

∫ +∞

−∞
ψ(t)e−iωtdt

= i
√
T0e

−iωT0
2

sin2 ωT0

4
ωT0

4

,

|Ψ(ω)| =
√
T0

∣

∣

∣

∣

∣

sin2 ωT0

4
ωT0

4

∣

∣

∣

∣

∣

. (25)

Moreover Φ(ω) =
1√
T0

∫ +∞

−∞
φ(t)e−iωtdt

=
√
T0e

−iωT0/2 sin
ωT0/2

ωT0/2
,

|Φ(ω)| =
√
T0

∣

∣

∣

∣

sin ωT0/2
ωT0/2

∣

∣

∣

∣

. (26)

From (22), (25), and (26), we obtain an expression for the PSD
of Haar Wavelet-OFDM as follows

γxhaar
(f) =

J−1
∑

j=J0

∣

∣

∣

∣

∣

sin2 πfT0

2j+1

πfT0

2j+1

∣

∣

∣

∣

∣

2

+ |sinc(πfT0/2J0)|2. (27)

B. Width of the main lobe

The width of the main lobe of the PSD gives a measure
of the bandwidth efficiency of the signal. Here we calculate
∆fhaar of the PSD of Haar Wavelet-OFDM expressed in (27).

γxhaar
(f) = 0 (28)

⇔







∀j ∈ [J0, J − 1]

∣

∣

∣

∣

sin2 πfT0

2j+1

πfT0

2j+1

∣

∣

∣

∣

2

= 0

and |sinc(πfT0/2J0)|2 = 0

⇔
{

∀j ∈ [J0, J − 1] fT0

2j+1 = kj , kj ∈ Z
∗

and fT0

2J0
= kL, kL ∈ Z

∗

⇔ fT0 = 2Jk, k ∈ Z
∗. (29)

The width of the main lobe is ∆fhaar = f1 − f−1, such that

f1 = 2J

T0
and f−1 = −2J

T0
. We have then :

∆fhaar =
2M

T0
. (30)

Note here that the width of the main lobe is the same for all
the variants, since it does not depend on the first scale J0.

IV. SIMULATIONS AND DISCUSSION

In this section, the PSD is obtained by simulation, to con-
firm the analysis in Section III, and the bandwidth efficiency of
Wavelet-OFDM is discussed and compared with conventional
OFDM.

A. Simulation of the PSD of Haar Wavelet-OFDM

Fig.3 gives the experimental PSD, and the theoretical PSD
as a function of the normalized frequency based on (27). The
experimental PSD is simulated using Matlab, and estimated
via the periodogram method with a rectangular window. Be-
fore applying the wavelet modulation based on IDWT, zero

padding by a factor of 4 is performed on the input signal in
the frequency domain. The number of carriers considered is
M = 16. The experimental curve shows a good fit with the
theoretical one.

−1 −0.5 0 0.5 1 1.5
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6
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Figure 3: Theoretical and experimental PSD of Haar Wavelet-
OFDM.

B. Comparison with OFDM
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S

D
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d
B

]

 

 

OFDM

Haar Wavelet

Figure 4: PSD of OFDM and Haar Wavelet-OFDM.

Based on the same parameters and method explained in
Section IV-A, the PSD of Haar Wavelet-OFDM and OFDM
without cyclic prefix are simulated as displayed in Fig.4. The
width of the main lobe of the PSD of Haar Wavelet-OFDM
is the double that of OFDM. Moreover, Haar Wavelet-OFDM
has very large side lobes. Many applications can not tolerate
these poor spectrum characteristics. It is true that Haar can be
filtered to reduce the side lobes effect, but this will change the
system performance. Note that OFDM may use a cyclic prefix,
but it does not normally exceed 25% of the total bandwidth.

C. Discussion

Fig.5 displays the sum over each scale of the wavelet in the
frequency domain, and the sum over all the scales which gives
the PSD as expressed in (19). As we can observe, the wavelets
of the smallest scale have the largest main lobe width, and this
defines the main lobe width of the PSD.
Among the well known wavelets, the Shannon wavelet has

the best FL, but it is not orthogonal and has a slow decay in
the time domain. In addition, the study investigates the DWT,
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Figure 5: Frequency domain wavelets for each scale.

while the Shannon wavelet can be applied only to the complex
wavelet transform. The Meyer wavelet is more attractive, as it
has a faster decay and satisfies the orthogonality condition. A
discrete format approximation of Meyer wavelet noted Dmey
is possible, and it can simulate the Meyer wavelet based on a
finite impulse response (FIR) filter as depicted in Fig.6 1. As a
result, the fast wavelet transform can approximate the Meyer
wavelet transform, and the DWT can be applied. As simulated

−0.5 0 0.5
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−0.5

0

0.5

1

Dmey Wavelet function

−0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

1

Dmey Scaling function

Figure 6: Discrete Meyer wavelet and scaling function.

in Fig.7, Discrete Meyer Wavelet-OFDM has a better spectrum
efficiency than Haar Wavelet-OFDM, but it is not as good as
OFDM without cyclic prefix.
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Figure 7: PSD of OFDM and Meyer Wavelet-OFDM.

1Generated using the MATLAB wavefun(’dmey’) command, Wavelet Tool-
box.

V. CONCLUSION

The PSD limitations of Wavelet-OFDM have been investi-
gated in this paper, especially for the Haar wavelet. While Haar
Wavelet-OFDM has some advantages, we have shown that it
has a serious limitation in terms of the bandwidth efficiency,
since its spectrum has large main lobe and large side lobes
compared with the OFDM system.

Even though the Meyer wavelet is not as extensively
promoted in the literature as the Haar wavelet, but has a
better bandwidth efficiency, and may potentially compete with
OFDM in this respect. Our next study is about the character-
istics and performance of Meyer Wavelet-OFDM.
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