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Abstract—Despite their widespread use for the analysis of
graph data, current graph filters are designed for graph signals
that do not change over time, and thus they cannot simultane-
ously process time and graph frequency content in an adequate
manner. This work presents ARMA2D, an autoregressive moving
average graph-temporal filter that captures jointly the signal
variations over the graph and time. By its unique nature, this
filter is able to achieve a separable 2-dimensional frequency
response, making it possible to approximate the filtering specifi-
cations along both the graph and temporal frequency domains.
Numerical results show that the proposed solution outperforms
the state of the art graph filters when the graph signal is time-
varying.

Index Terms—signal processing over graphs, graph filters,
separable graph-temporal filters, distributed signal processing

I. INTRODUCTION

In the field of signal processing over graphs [1], graph
filters are the basic primitives for the processing of graph
signals. Graph filters originate from the extension of the
Fourier transform from signals residing on regular domains
like time and space, to signals that reside on the vertices
of an irregular graph [1]–[5]. A graph filter is the direct
analog of the classical temporal filter, but now operating on
the graph signal by amplifying or attenuating part of its graph
spectrum. Relevant applications of graph filters range from
data classification [2], signal denoising and smoothing [6], [7]
to reaching consensus [8], and anomaly detection [9].

Similar to their temporal analogs, graph filters can achieve
a finite impulse response (FIR) [2], [10], [11] as well as
an infinite impulse response (IIR) [12], [13] form. Never-
theless, despite approximating relatively well a desired graph
frequency response when the graph signal is time-invariant,
state-of-the-art graph filters are largely unsuitable for filtering
graph signals that change over time. This is especially true
when the filtering specifications are set w.r.t. both the graph
and temporal domains. Whereas FIR graph filters completely
ignore the temporal frequency content of the signal, our
previously proposed autoregressive moving average (ARMA)
IIR graph filters suffer from design constraints, allowing for
the approximation of only a limited family of 2-dimensional
frequency responses.

In this paper, we propose ARMA2D, a generalization of
ARMA graph filters which overcomes some of the aforemen-
tioned issues. Our design allows for the distributed compu-
tation of a wider class of frequency responses at the price
of a communication and computational complexity increment
(w.r.t. ARMA), which is however asymptotically negligible

when the number of graph edges increases. We focus on
responses which are separable w.r.t. the graph and temporal
frequency, and show how to separably design the filter co-
efficients to meet given specifications in the graph and time
domain. Further, the proposed ARMA2D relaxes the stability
constraints of the ARMA graph filters, allowing us to find the
filter coefficients separably in each domain while ensuring the
joint stability. These properties give the ARMA2D the potential
to improve the approximation accuracy of the filters. To the
best of our knowledge, we are not aware of any other graph
filters possessing these properties, even at a higher complexity.

We conclude this work showcasing the approximation qual-
ity of our filters and displaying the added value of our
approach, allowing for different separable filter specifications
in the graph and time domain. Numerical results demonstrate
that ARMA2D filters outperform the state of the art universal
FIR graph filters (i.e., where the filter coefficients are designed
for a continuous range of graph frequencies) when the signal
on the graph is time varying.

II. PRELIMINARIES

Let us consider an undirected1 and connected graph G of
N nodes and M edges. We indicate with x ∈ RN the graph
signal and with L the graph Laplacian.

Graph Fourier transform (GFT). The GFT [1] x̂ of x and
its inverse are calculated as

x̂i = 〈x,φi〉, and xi =
N∑
n=1

x̂nφn(i), (1)

where 〈·〉 denotes the inner product, {φn}Nn=1 are the Lapla-
cian’s eigenvectors and φn(i) is the ith entry of φn.. The
corresponding eigenvalues {λn}Nn=1 form the graph spectrum.
To avoid any restrictions on the applicability of the proposed
approach, we present the results for a general Laplacian matrix
L. We only require L to be symmetric and local: for all i 6= j,
Lij = 0 whenever the nodes ui and uj are not neighbors and
Lij = Lji otherwise.

Graph filters. A graph filter H is defined as a linear operator
that acts on a graph signal x by amplifying or attenuating
different parts of its spectrum as

Hx =
N∑
n=1

H(λn) x̂nφn. (2)

1We present our results for undirected graphs, yet the core idea can be
applied to directed ones using the adjacency matrix instead of the Laplacian.
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Let λmin and λmax be the minimum and the maximum eigenval-
ues of L. The graph frequency response H : [λmin, λmax]→ R
controls how much F amplifies the signal component of each
graph frequency. Given a desired graph frequency response
H∗(λn), the filter coefficients can be found by solving a linear
system when the underlying graph structure (i.e., the graph
frequencies λn) is known [1], [2]. On the other hand, we can
use a polynomial approximation [10] to design a universal
filter, i.e., design the filter coefficients independently from
the graph structure. The latter describes the graph frequency
response for any graph. The filter output of an FIRK universal
filter can be calculated as

y =

(
ϕ0I +

K∑
k=1

ϕkL
k

)
x, (3)

with ϕ0, . . . , ϕK being the filter coefficients.

ARMAK graph filters. In [13], we introduced the ARMAK
graph filters with the goal to implement IIR filters on graphs.
This allowed us to better track a time-varying input signal,
since the input enters in the computations at every iteration,
and not only at the beginning, as implemented in FIR graph
filters. In case of a time-varying input signal, the (parallel)
ARMAK recursion has the form

y
(k)
t+1 = ψ(k)My

(k)
t + ϕ(k)xt (4a)

zt+1 =

K∑
k=1

y
(k)
t+1 + cxt, (4b)

for arbitrary y(k)
0 and where the coefficients ψ(k), ϕ(k) and c

are the complex-valued filter coefficients. The matrix M is a
translated version of the Laplacian matrix L defined as

M = %I −L, with % =
λmax + λmin

2
, (5)

which is chosen so as to increase the stability region of the fil-
ter (considering that ‖M‖2 ≤ % ≤ ‖L‖2). Since a translation
does not influence the eigenvectors of L, we now attain the
desired response H(λ) by mapping it to the domain of M ’s
eigenvalues (µ): G(µ) = H(% − λ). From Sylvester’s matrix
theorem it is known that the eigenvalue µn of M is related to
the eigenvalue λn of L as µn = %− λn. For instance, for the
normalized Laplacian we obtain G(µ) = H(1 − λ), whereas
for the standard Laplacian we have G(µ) = H(λmax/2− λ).

The graph and temporal frequency response of (4) is [13]

H(µ, z) =
K∑
k=1

ϕ(k)z−1

1− ψ(k)µz−1
+ cz−1. (6)

As we can see, the parallel ARMAK recursion (4) is now
an ARMAK filter in both the graph and temporal domain.
A deeper analysis of (6) reveals however a series of chal-
lenges. First of all, ARMAK cannot approximate any de-
sired 2-dimensional response. Indeed, the transfer function
(6) presents a strong correlation between the graph (µ) and
temporal frequencies (z). Another major challenge is that we
have to deal with stability constraints in the design phase. The
coefficients ψ(k) must be designed to approximate a given 2-
dimensional frequency response, while ensuring the stability
in the graph and temporal domain. The stable region of the

1

0.5

0

-0.5

-10

1/4

1/2

3/4

2

0

1

3

1

f
µ

|h
(µ
,ω

)|

1

0.5

0

-0.5

-10

pi/4

pi/2

3pi/4

0

5

10

15

pi

f
µ

|h
(µ
,ω

)|

(a) ARMA3 (b) ARMA6

Fig. 1. The joint graph and temporal frequency response of two ARMAK
graph filters, both designed to approximate an ideal low pass (step) response in
the graph domain with (translated) cut-off frequency µc = 0.5 and K = 3, 6.
A normalized Laplacian has been used (illustrated with respect to its translated
version) and also the temporal frequencies are normalized (×π rad/sample).

coefficients ψ(k) is also limited by the fact that the K distinct
poles of (6) obey z = ψ(k)µ. This reduces the stable placement
area of the poles, since the poles in one domain will influence
the ones in the other domain.

In order to illustrate the latter, in Fig. 1, we have plotted
the joint graph and temporal frequency response of two
ARMAK filters, for K = 3, 6. Both filters are designed to
approximate an ideal step function in the graph domain with
cut-off frequency λc = 0.5. Fig. 1 depicts the translated graph
frequency µ = %− λ (we adopt the normalized Laplacian for
which % = 1). The temporal axis, on the other hand, measures
the normalized temporal frequency f such that, for f = 0,
one obtains the standard graph frequency response. As we can
see, both ARMAs present instability issues for higher temporal
frequencies f and this becomes more evident when the order is
higher. For these particular cases, the joint frequency responses
are also characterized by an antisymmetry around the point
(0, 1/2), a property that has been empirically observed for
different ARMAK filters of this form.

III. ARMA2D GRAPH FILTERS

In order to overcome the limitations of ARMAK filters,
in this section we propose ARMA2D graph filters. Trading
off computational and communication complexity, ARMA2D

presents the following benefits: (i) it improves the approxi-
mation accuracy and stability of the filters, (ii) it achieves a
separable frequency response in the graph and time domain,
(iii) it can approximate any prescribed separable 2-dimensional
frequency response, and (iv) it achieves a rational frequency
response with any (not necessarily the same) order in the graph
and time domain.

We start by presenting the ARMA2D filters and analyze their
stability. We then discuss their distributed computation, and
propose solutions for the 2-dimensional filter design problem.

ARMA2D graph filters. Consider the enhanced ARMA recur-
sion

L∑
l=0

P∑
p=0

ψlapM
lyt−p =

K∑
k=0

Q∑
q=0

ϕkbqM
kxt−q, (7)
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Fig. 2. Different 2-dimensional filter approximations. From left to right, we go from a low-pass (LP) filter in both graph and temporal frequency domain to
a high-pass (HP) filter in both domains. The joint filter is an FIR10 in the graph domain and a Butterworth of order 6 in time.

where ψl, ϕk, ap, bq are coefficients to be chosen. Computing
the output yt now involves shifts of different orders in the
graph domain, indicated by the powers of M , and in the time
domain, indicated by the temporal memory of the past output
and input signal. This seems to indicate that we can capture the
signal variations in both domains, and by introducing more de-
grees of freedom, the approximation accuracy can potentially
increase. Proposition 1 asserts that the above intuition holds.

Proposition 1: Assuming that the coefficients ψl and ap are
chosen to ensure stability (see proof for exact conditions), the
joint transfer function of recursion (7) is

H(µ, z) =

∑K
k=0

∑Q
q=0 ϕkbqµ

kz−q∑L
l=0

∑P
p=0 ψlapµ

lz−p
(8)

=

[∑K
k=0 ϕkµ

k∑L
l=0 ψlµ

l

][∑Q
q=0 bqz

−q∑P
p=0 apz

−p

]
= Hg(µ)Ht(z).

Proof (Sketch): Assume that the filter is stable and
consider a reduced dimension problem for (7). This can be
done by setting xt = xtφ, with xt the scalar magnitude of
xt in the eigenspace of φ. By considering the orthogonality
of the Laplacian eigenbasis, we can then rewrite (7) as

L∑
l=0

P∑
p=0

ψlapµ
lyt−p =

K∑
k=0

Q∑
q=0

ϕkbqµ
kxt−q, (9)

where yt ∈ C is the magnitude of yt ∈ Cn in the eigenspace
of φ. Taking the z-transform on both sides, we obtain the joint
transfer function (8).

Let us analyze the stability condition for which recursion
(7) converges. For simplicity, we focus on the dimensionality
reduced equivalent problem (9), but the result also holds for
(7). We start by rewriting (9) as

a0

L∑
l=0

ψlµ
lyt +

L∑
l=0

P∑
p=1

ψlapµ
lyt−p =

K∑
k=0

Q∑
q=0

ϕkbqµ
kxt−q.

(10)
We then define the P × 1 vector ỹt = [yt−P+1,
yt−P+2, . . . , yt−1, yt]

>, the (Q + 1) × 1 vector x̃t =
[xt−Q, xt−Q+1, . . . , xt−1, xt]

>, Ψ =
∑L
l=0 ψlµ

l and Φ =

∑K
k=0 ϕkµ

k. With these definitions in place, we rewrite (9)
as

a0Ψ ỹt = Aỹt−1 +Bx̃t, (11)

with A and B the P × P and (Q + 1) × (Q + 1) matrices,
respectively, defined as

A=


0 a0Ψ . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . a0Ψ

−aPΨ −aP−1Ψ . . . −a1Ψ

B=


0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0
bQΦ . . . b0Φ

.
We can rewrite (11) as

ỹt = Ãỹt−1 + B̃x̃t, (12)

with Ã = (a0Ψ)
−1A and B̃ = (a0Ψ)

−1B. It is then clear that
(12) and thus (7) converges if the eigenvalues of Ã are lower
than one in magnitude, i.e., ‖A‖ < |a0Ψ |, and if (a0Ψ)

−1 is
different from zero.

It follows that recursion (7) implements an ARMA(L, K)
in the graph domain and an ARMA(P , Q) in the time domain.
The ARMA2D filters thus have the potential to achieve a better
approximation quality of a 2-dimensional desired response,
as compared to (4). Notice that (7) is a special form of
implementing 2-dimensional filters, thus it will not collapse
to a pure ARMA graph filter when the graph signal is time-
invariant. This is because we will have yt on both sides of
(7).

The following Corollary presents a sufficient condition to
obtain stable ARMA2D filters and proposes how to obtain joint
stability while designing the filter coefficients separably in
each domain.

Corollary 1: Assuming a0 = 1 and defining A0 =∑L
l=0 ψlM

l, the ARMA2D recursion (7) can be expressed as

A0yt+
L∑
l=0

P∑
p=1

ψlapM
lyt−p =

K∑
k=0

Q∑
q=0

ϕkbqM
kxt−q. (13)

It can be shown that (13) converges if A0 is non singular and
the temporal ARMA(P,Q) has poles inside the unit circle.

Proof (Sketch): Let us start by noticing that the require-
ment a0 = 1 can be easily satisfied considering that it is just
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a normalization factor. The first claim that A0 must not be
singular comes from the expression (12), where we now need
to take the inverse of A0. This means that only the graph filter
coefficients ψl and ϕk must be tuned to satisfy this condition.
Then, for the ARMA2D to be stable we will require Ã to
have eigenvalues smaller than one in magnitude. Considering
that now the structure of Ã will depend only on the temporal
coefficients ap, this is equivalent to say that the poles of the
temporal ARMA(P,Q) filter lie inside the unit circle.

The main message that Corollary 1 delivers is that now
we can separably find the filter coefficients in the graph and
temporal domain and still achieve stable ARMA2D filters.
Even-though one can find the condition that A0 is not singular
for a general graph matrix M , we must notice that in order
to be implemented (and thus obtain the output yt) the graph
structure must be known. This means that, under the stability
condition, we need to invert the matrix A0 which prohibits an
efficient distributed implementation. The following corollary2

provides an alternative way to achieve separability without
requiring knowledge of the graph spectrum. Note that this
way of designing the filter coefficients avoids computing
the eigendecomposition of the graph Laplacian, which has
complexity O(N3), at the price of a decrease in approximation
accuracy of the desired response. This phenomenon is present
also for the universal FIRK and ARMAK graph filters.

Corollary 2: Setting L = 0 and ψ0 = 1 in (7), its joint
transfer function becomes

H(µ, z)=

[
K∑
k=0

ϕkµ
k

][∑Q
q=0 bqz

−q∑P
p=0 apz

−p

]
. (14)

By restricting L and ψ0, which means that now we have
an ARMA(0,K) = FIRK in the graph domain and an
ARMA(P,Q) in time, we lift the requirement of knowing
the graph spectrum during the design phase of the filter.
Moreover, except for specific cases, setting L = 0 does not
decrease the approximation accuracy3 w.r.t. the ARMA2D.
On the contrary, for L = 0, the communication complexity
decreases, and the stability condition simplifies. Indeed, in this
case, the 2-dimensional filter is stable as long as the temporal
ARMA(P,Q) is stable, i.e., the poles lie inside the unit circle.
Due to its benefits, we will showcase this approach in the
numerical results.

Distributed computation. We consider the standard message-
passing model [14] where the input graph is the same as the
network over which the computation is performed. We will
assume that any message exchange takes much shorter than
the sampling period of the signal. We quantify the efficiency
of the filtering in terms of the per-timestep communication
complexity, defined as the number of bits the network needs
to exchange to compute yt given yt−1, . . . ,y0. Let us focus
on the special case that A0 = I (see Corollary 1), for
which recursion (7) is efficiently computable. The recursion

2The proof is omitted since it follows from Proposition 1.
3Current design methods for universal ARMA graph filters have only

been shown to improve the approximation accuracy of universal FIRK
graph filters for specific response functions and in general feature a similar
performance [13].

involves the use of the terms M lyt−p and Mkxt−q for all
k, l, p, q > 0, however, only the terms M1yt−1, . . . ,M

lyt−1
and M1xt, . . . ,M

kxt have not been computed during a
previous timestep. Since in both cases we are dealing with
successive powers of M , we can reduce the computation
effort by obtaining M lyt−1 from M l−1yt−1 and so on
(the same holds for Mkxt). Thus, we will need a total of
K + L multiplications with matrix M . Since M is a local
matrix, the network can perform the multiplication of M
with any graph signal distributedly, by exchanging 2M values.
It follows that the per-timestep communication complexity is
2M(K+L)×cr = O(MK) bits, where cr is the architecture-
dependent representation length of each scalar and, w.l.o.g.,
we assume that K ≥ L. The per-timestep computational
complexity of ARMA2D is therefore less than twice that of
ARMAK (which is 2MK×cr bits per timestep) in the general
case, and equivalent when L = 0.

The filter design problem. We now present the design
problem of a 2-dimensional IIR graph-temporal filter in order
to approximate any prescribed frequency response H∗(µ, z).
We focus our attention on approximating H∗(µ, z) with the
filter (14) since it suits better for a continuous range of fre-
quencies in both the graph and the temporal frequency domain.
This design approach is mostly desirable when the graph
structure is unknown to the designer or when it is time-varying
either deterministically [13] or stochastically [15]. Further, as
previously mentioned, computationally more efficient in large
graphs. In this way, we can design the filter coefficients only
once and they will be the same for all graph realizations.

Given a 2-dimensional frequency response
H∗ : [µmin, µmax] × [ω = 0, ω = 2π] → R, the filter
coefficients are found by minimizing∫

µ

∫
ω

∣∣H(µ, ejω)−H∗(µ, ejω)
∣∣2 dµ dω, (15)

where H(µ, ejω) may have the form (6) or (14) (for z = ejω).
In case the recursion (14) is used, we can use the fact that
its joint transfer function can be expressed as H(µ, ejω) =
Hg(µ)Ht(e

jω), and thus we can design the 2-dimensional
filter separably in each domain. This also allows us to use
different filter specifications in the graph and temporal do-
main. Let us for instance consider a desired filter frequency
response of the form H∗(µ, ejω) = H∗g (µ)H

∗
t (e

jω). The
design problem (15) can then be reformulated as finding the
respective filters taps to approximate each frequency response
independently, minimizing∫
µ

|Hg(µ)−H∗g (µ)|2dµ and
∫
ω

|Ht(e
jω)−H∗t (ejω)|2dω (16)

for the graph and temporal filter approximations, respectively.
In this way, we can employ any technique to approximate a
desired graph frequency response (such as Chebyshev poly-
nomial approximation [10]), and any of the well-established
techniques for temporal filter design [16].

IV. NUMERICAL EVALUATION

We illustrate our approach by first showing that recursion
(7) can approximate any type of filter with given specifications
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Fig. 3. SER (dB) vs. input SNR (dB) for our presented ARMA2D approach
(FIR10 in graph and Butterworth 6 in time) and for the classical universal
FIR10 graph filters. The results are averaged over 10 iterations.

in the graph and temporal frequency domain. Then, we use our
proposed filter to recover a band-limited time-varying graph
signal which is affected by noise and interference in both the
graph and time domain.

Filter approximation. With reference to Fig. 2, we can see
that the proposed approach can approximate different desired
separable 2-dimensional frequency responses. For this particu-
lar case, the cut-off frequencies in both domains are chosen as
the half of the respective bands. We have further considered an
FIR10 in the graph domain and a 6th order Butterworth filter
for the temporal domain. The approximation accuracy in each
domain is improved by increasing the respective filter orders.

Signal recovery. Let us now consider that the time-varying
graph signal has the form xt = ut + nt, where ut is
characterized by 〈ut,φn〉 = eiπt/4 if λn < λmax/2 and zero
otherwise. We consider zero-mean white Gaussian noise with
different noise powers. To recover our signal ut we adopt the
double LP filter of Fig. 2 with graph cut-off graph frequency
λmax/2 and temporal cut-off frequency fc = 1/2. The filtering
is performed over a graph of 100 randomly placed nodes, and
where two nodes are considered neighbors if they are closer
than 15% of the maximum distance in the area. Considering
that not only the signal but also the noise is time-varying, we
expect that the 2-dimensional filter will cancel out the noise
spectral component outside of the band of interest not only in
the graph domain but also in the temporal domain. To quantify
the performance, we define the signal-to-error ratio (SER) as

SERt =
‖ût‖2

‖ŷt − ût‖2
, (17)

which quantifies how well we cancel the out-of band noise
and approximate the filter (notice that our desired response in
the graph frequency domain is û0).

In Fig. 3 we show the SER (in dB) for different input
signal-to-noise ratios (SNRs), for both our presented hybrid
approach and the universal FIR filter which operates only
on the graph spectral domain. The pure FIR graph filter (3)
implicitly assumes that the signal ut does not oscillates in
time (i.e., ut = u0) and that only the noise is considered time-
varying. For a time varying ut, the FIR performance degrades
drastically since it does not take the temporal spectrum of
the input signal into account. As seen in the figure, ARMA2D

outperforms the FIR graph filter for all noise levels. When the
noise level decreases, i.e., the input SNR is higher, the SER
is lower than the input SNR due to the filter approximation
accuracy. We conclude that the proposed 2-dimensional filters,

as expected, better suit time-varying environments. Future
research will investigate the performance in the case of time-
varying graphs.

V. CONCLUSIONS

In this work, we have proposed autoregressive moving aver-
age graph-temporal filters, which achieved 2-dimensional sep-
arable frequency response. We have shows that the proposed
graph filters improve the approximation accuracy and the
stability w.r.t. the state of the art ARMA graph filters. We also
characterize under which conditions the proposed ARMA2D

converges. The distributed computation and the 2-dimensional
filter design problem have been addressed with a main focus
on separable 2-dimensional filters. We have concluded the
paper by showing that the proposed 2-dimensional filter can
approximate well separable prescribed frequency responses
and we show that it outperforms the state of the art graph
filters when the graph signal is time-varying.
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