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Abstract—Photoplethysmography (PPG) is a simple, unobtru-
sive and low-cost technique for measuring blood volume pulse
(BVP) used in heart-rate (HR) estimation. However, PPG based
heart-rate monitoring devices are often affected by motion
artifacts in on-the-go scenarios, and can yield a noisy BVP
signal reporting erroneous HR values. Recent studies have
proposed spectral decomposition techniques (e.g. M-FOCUSS,
Joint-Sparse-Spectrum) to reduce motion artifacts and increase
HR estimation accuracy, but at the cost of high computational
load. The singular-value-decomposition and recursive calcula-
tions present in these approaches are not feasible for the im-
plementation in real-time continuous-monitoring scenarios. In
this paper, we propose an efficient HR estimation method based
on a combination of fast-ICA, RLS and BHW filter stages that
avoids sparse signal reconstruction, while maintaining a high
HR estimation accuracy. The proposed method outperforms
the state-of-the-art systems on the publicly available TROIKA
data set both in terms of HR estimation accuracy (absolute
error of 2.25 ± 1.93 bpm) and computational load.

1. Introduction

Accurate measurement of heart-rate (HR) is an important
factor for several tasks such as early diagnosis of car-
diovascular diseases, detection of stress and hypertension,
and continuous monitoring of physical activities [1]. The
recent advancements in photoplethysmography (PPG) have
spurred the development of wearable wrist-based heart-rate
sensors, which have gained wide acceptability due to an
increased user comfort [2]. However, the blood volume pulse
(BVP) reported by these PPG devices can often be highly
contaminated by motion artifacts and noise; thus, either
signal modeling or sparse signal reconstruction (SSR) are
required to obtain a clean signal.

The current state-of-the-art on PPG signal reconstruction
includes techniques such as adaptive filtering: Least Mean
Squares (LMS) [2], [3], Recursive Least Squares (RLS) [4],
Kalman and Wiener filters [5], and multiple Z-tap structures
[6] that are commonly applied for online HR estimation due
to their low computational load. However, they depend on a
priori signal modeling and hence have a lower accuracy in
the presence of motion artifacts. On the other hand, SSR

techniques such as Focal-Underdetermined-System-Solver
extension (M-FOCUSS) [7] and Multiple-Measured-Vectors
(MMV) [8] generate a controlled level of spectrum sparsity
for a sufficient spectral resolution and higher accuracy.
However, this leads to higher computation load [9], [10].

In this paper, we propose a method for HR peak de-
tection based on an initial moving-average-filter, an RLS
scheme and an FIR Blackman-Harris-Window (BHW) fil-
ter’s bandwidth variation. The proposed method is used
to estimate HR values from spectral peaks and also to
reconstruct the inter-beat interval (IBI) signal for each BVP
signal window. The output signal is compared point-to-point
against the reference electrocardiography (ECG) R-peak
distance on TROIKA dataset. The computational efficiency
of the proposed method (HEAL-T, henceforth) is compared
in terms of the execution time to the LMS baseline and the
M-FOCUSS method [7] of the TROIKA framework.

2. TROIKA Dataset

Publicly available TROIKA dataset [11] from the 2015
IEEE Signal Processing Cup1 that closely mimics real-life
motion activities is used throughout the experiments. The
dataset consists of 5 minute treadmill trials by 12 different
subjects. Each 5 min trial is divided into 6 different exercises
as follows: 30 sec - rest (1-2 km/h), 1 min - Walking (6-8
km/h), 1 min - Running (10-12 km/h), 1 min - Walking (6-8
km/h), 1 min - Running (10-12 km/h) and finally 30 sec -
rest (1-2 km/h). The provided signals are PPG, accelerom-
eter and an ECG ground-truth. The sampling frequency for
all the signals is fs = 125 Hz. In TROIKA experiments on
heart-rate estimation, the authors use a sliding window of
8 seconds with a 6 second overlap. The same settings are
used throughout this paper.

3. Methodology

The HEAL-T pipeline (see Figure 1) consists of (a)
initial filtering stage composed of a fast-ICA decomposi-
tion and a moving-average-filter application, (b) RLS filter
scheme, (c) BHW bandwidth adjustment, (d) a spectral peak
tracking process, and (e) an IBI estimation.

1. http://zhilinzhang.com/spcup2015/data.html
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Figure 1: The pipeline of HEAL-T heart-rate estimation method that is applied per signal window.

3.1. Initial Filtering and Signal Modeling

In this stage the signal is filtered using statistical inde-
pendence (e.g. ICA decomposition) and linear phase model-
ing (e.g. FIR schemes) per window to preserve BVP critical
frequency ranges with an adequate spectral resolution.

3.1.1. fast-ICA. The fast-ICA algorithm is one of the fastest
and efficient infomax algorithm implementations that en-
sures an adequate linear independence for low-frequency
signal representations [12]. The fast-ICA decomposition
(unmixing) models the negentropy gradient between PPG
and Accelerometer channels to learn the unmixing matrix
Ws [13]. The process returns 5 independent-components
(ICs): one for each of the two PPG channels and one for
each of the x, y and z axes of the Accelerometer signal. The
subsequent mixing process integrates the two PPG channels
(Accelerometer ICs are ignored).

3.1.2. Moving Average Filter. After the initial denoising
and PPG harmonic reconstruction stages using fast-ICA,
we apply moving average filter to ensure the removal of
any residual motion artifacts. For each signal window Xi a
compositional model is defined as Xi = PPGi+Acceli+Ni,
where PPGi and Acceli are PPG and Accelerometer signals,
respectively; and Ni is a high-frequency additive noise com-
ponent. The filter is a computationally inexpensive convo-
lution between Xi signal and a constant impulse response
1/M (Equation 1) that increases the SNR value and reduces
the additive noise [14]. In order to fix the moving average
filter’s low-pass bandwidth below PPG channel frequency
ranges [0.9− 2.5] Hz [15], the M value is set to 20.

X̂i(k) =
1

M

M−1∑
n=0

Xi(k − n) (1)

3.2. RLS Filter

To remove the incidence of motion artifacts in the PPG
channels, we iteratively apply an RLS filter. RLS provides
a non-misadjusted solution for least-squares cost function
and a smooth spectral representation [16]. The filter is opti-
mal adaptive noise-cancellation algorithm for low-frequency
bands [2].

ω(n) = ω(n− 1)− κ(n− 1) [d(n)− ω(n− 1)υ(n)] (2)

P (n) = λ−1P (n− 1)− λ−1κ(n− 1)υT (n)P (n− 1) (3)

κ(n) =
λ−1P (n− 1)υ(n)

1 + λ−1υT (n)P (n− 1)υ(n)
(4)

Equations 2 and 3 show the time-stepping of RLS, in which
a forgetting factor λ modulates the filter weights ω(n) as a
function of the previous ones ω(n − 1). Other parameters,
υ(n) (accelerometer signal), the factor κ(n) (Equation 4),
and the desired response d(n) = X̂i(n) are synchronized in
a sequence to generate an output X̂r. The RLS parameters
are set as λ = 0.99 and P (0) = 10−3I [3], and the order
of the filter is set as N = 32 [17].

3.3. BHW Filter

In this step, the signal X̂r(k) (the output of RLS) is
bound between [0.9−2.5] Hz [15], reducing the phase non-
linearities and the stopband ripple [18]. A 4-term Blackman-
Harris Window filter (Equation 5) is applied to achieve the
desired stopband attenuation of As = −60dB. The BHW
impulse response ḣ(n) is truncated at N = 150, and a
stop-band attenuation is achieved in Âs = −52.66dB with
maximum stopband ripple of |δs| = 2.32dB.2 These values
are sufficient for an accurate HR peak detection afterwards.

Ẋ(k)i =
N−1∑
n=0

X̂r(k − n)iḣ(n)
[
0.3587− 0.4883cos

(
2πn

N − 1

)
+0.1413sin

(
4πn

N − 1

)
− 0.0116cos

(
6πn

N − 1

)] (5)

3.4. Spectral Peak Tracking

In [11] the authors demonstrate that even though SSR
techniques increase the level of numerical sparsity, high
amount of motion artifacts can increase the error in the
HR peak detection process. The robustness of the peak
detection can be improved by a peak tracking process [19].
Our implementation of the spectral peak tracking consists of
three steps which run iteratively over each sliding window:

• HR Peak Selection
• HR Peak Verification
• BHW bandwidth Readjustment

3.4.1. HR Peak Selection. The peak selection process ac-
cepts PPG and Accelerometer signal streams as input and
produces a set of HR candidate peaks as output. As a first
step, this process generates a set of spectra from the PPG

2. When compared to other filters (e.g. Rectangular or Bartlett), BHW
yields superior stopband attenuation and lower ripple variance.
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and Accelerometer signals by running a fast Fourier trans-
form (FFT) on these signal channels. Next, from the PPG
spectrum, the GetPeaks function selects a set of frequencies
which form a local maximum above 30% of the normalized
spectrum amplitude. From this set, the first peak with a low
accelerometer noise component is identified – this is done by
selecting the peak for which the difference between the PPG
PPG(n) and accelerometer spectrum amplitudes Accel(n)
at the peak is greater than 0.10. Once this peak position
is identified, the SearchHrPeaks function further selects a
set of appropriate candidate peaks by searching either in
the left or the right direction (given by the searchDirection
flag) in the HR spectrum. The direction of the search may
change in subsequent iterations based on the value of the
searchDirection flag as is set in the peak verification stage.

Algorithm 1 HEAL-T HR Peak Selection Process
1: function PEAKSELECTION(PPG,ACCEL,NFFT,searchDirection)
2: PPGSpec← FFTfunc(PPG,NFFT)
3: ACCELSpec← FFTfunc(ACCEL,NFFT)
4: peaks← GetPeaks(HR)
5: while n < count(peaks) do
6: if |HR(n)| − |Accel(n)| > 0.10 then
7: [HR] ← SearchHrPeak(HR,searchDirection)
8: return [HR]
9: else

10: n← n + 1

3.4.2. HR Peak Verification. From the set of candidate
peaks returned by the peak selection process, the next step is
to verify and select peaks which fall within a certain range.
This range is given by range = MeanPrevHR ± threshold,
where MeanPrevHR is the mean heart rate values of the
previous four windows and the threshold is set based on
the variance of the candidate HR peaks in the current
window. If the variance is below 0.10, then the threshold
is set to 0.05, otherwise threshold is set to 0.10. The peak
verification step iterates through the set of candidate HR
peaks and determines if a peak lies within this range. Once
we encounter a peak which is beyond this range, we readjust
the BHW window and the searchDirection flag for peak
search. If the HR peak value is below the range, the search
direction for the next iteration is set to left-to-right; else it
is set to right-to-left.

3.4.3. BHW bandwidth Readjustment. For the BHW
bandwith readjustment, if the HR peak value is below
the range determined in 3.4.2, the ωp parameter of BHW
window is increased by 0.30. Otherwise if the encountered
HR peak value is above the range, then the ωs value is
decreased by 0.30. The default values of ωp and ωs are
given by Equation 6.

[ωp, ωs] =

{
[0.9, 2.5] Hz, if HR(1) ≤ 120 bpm
[1.7, 3.5] Hz, if HR(1) > 120 bpm

(6)

For the next iteration, we reapply the BHW window on
the HR spectrum and redo the Peak Selection Stage. We

Algorithm 2 HEAL-T HR peak verification process
1: procedure PEAKVERIFICATION(PPG,ACCEL,NFFT = 65,536,Mean-

PrevHR)
2: [HR] ← PeakSelection(PPG,ACCEL,NFFT,searchDirection)
3: HRvar ← Variance ([HR])
4: if HRvar < 0.10 then
5: threshold← 0.05
6: else
7: threshold← 0.10
8: H̄R = MeanPrevHR
9: n← 1

10: while HR(n) do
11: if HR(n) ≤ H̄R− threshold ∗ H̄R then
12: (HR(n), searchDirection)← increase peak(HR(n))
13: Change BHW(HR,ωp + 0.30,ωs)
14: else if HR(n) ≥ H̄R + threshold ∗ H̄R then
15: (HR(n), searchDirection)← decrease peak(HR(n))
16: Change BHW(HR,ωp,ωs − 0.30)
17: else
18: accept peak(HR(n))
19: n← n + 1

perform this until the PeakSelection algorithm no longer
returns any suitable candidate peak.

3.5. IBI Estimation

The output of the previous step is converted to the time
domain which yields a time-series of dichrotic notches. The
selected notches are the ones with the amplitude above 50%
for a given window. In the IBI estimation step we calculate
the time-difference between the adjacent dichrotic notches.
In order to estimate IBI for the whole signal, we need to
compensate for the window overlaps. Thus, the IBIs between
the notches in the overlap of the two consecutive windows
are averaged, while maintaining the values from the non-
overlapping segments. Finally, a smoothing spline (Cubic
spline) is used to calculate the Interpolated-IBI (IIBI) and
reduce undesired IBI spectral harmonics.

4. Evaluation and Results

In this section we evaluate HEAL-T in terms of the HR
estimation accuracy and computational efficiency in compar-
ison to the LMS baseline [17] (using the same paramenters)
and the TROIKA framework (M-FOCUSS) [11].

4.1. HR Estimation Accuracy Evaluation

HR estimation performance is evaluated in two settings:
(1) against the reference HR spectrum peaks, and (2) com-
paring the extracted IIBI (HR = 60/IIBI) to the reference
ECG RR-peak distances (filtered using Daubechies Wavelet
decomposition - level 3, order 3). Per subject and averaged
performances for the first setting are reported in Tables 1
and 3 for train and test sets respectively; and for the second
setting (IBI) in Table 2. Since ECG is not available for the
test set, IBI-based evaluation is reported only only for the
training set.
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TABLE 1: Absolute error per subject on TROIKA training set for HEAL-T, LMS baseline [17] and the TROIKA framework
[11]. The values significantly different for p < 0.01 are in bold italics.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg SD
HEAL-T 3.96 1.73 0.91 2.21 0.32 1.19 0.32 0.47 0.26 4.22 0.87 1.41 1.49 1.36
Han et al. [17] 5.21 2.22 1.45 3.44 0.88 3.42 0.58 1.33 2.45 4.55 1.21 4.33 2.59 1.57
Zhang et al. [11] 2.87 2.75 1.91 2.25 1.69 3.16 1.72 1.83 1.58 4.00 1.66 3.33 2.40 0.80

TABLE 2: IBI-based HR estimation on TROIKA training set for HEAL-T, LMS baseline [17] and the TROIKA framework
[11]. The values significantly different for p < 0.01 are in bold italics.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg SD
HEAL-T 5.42 4.54 2.53 3.39 2.55 3.04 2.26 2.58 2.75 5.04 3.46 3.21 3.40 1.05
Han et al. [17] 6.41 5.64 6.01 5.43 2.88 4.12 4.08 3.45 3.88 6.46 5.55 5.75 4.97 1.22
Zhang et al. [11] 6.55 5.43 5.12 4.45 2.81 3.78 2.78 3.33 3.42 6.74 4.52 4.64 4.47 1.32

TABLE 3: Absolute errors per subject on TROIKA test set for HEAL-T, LMS baseline [17] and the TROIKA framework
[11]. The values significantly different for p < 0.01 are in bold italics.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 Avg SD
HEAL-T 5.43 4.54 6.71 3.01 2.71 5.37 1.39 0.92 3.21 2.10
Han et al. [17] 7.42 4.54 15.34 5.47 5.35 10.35 2.56 3.45 6.72 4.54
Zhang et al. [11] 5.78 4.33 12.45 3.79 3.09 7.74 4.56 2.42 5.47 3.53

For the HR-peak based evaluation we obtain the absolute
error of 1.49 ± 1.36 bpm for the training (Table 1) and
3.21 ± 2.10 bpm for the test (Table 3) sets. The combined
train-test set average absolute error is 2.25 ± 1.93 bpm
(for comparison, for LMS and M-FOCUSS the combined
averages are 4.08±4.13 and 3.64±2.59 bpm, respectively).
For the IBI-based evaluation, we obtain the absolute error
of 3.40± 1.05 bpm (Table 2).

Figures 2a and 2b illustrate the performances of the
algorithm for subjects #9 (training set) and #7 (test set)
against reference HR peaks. Figures 3a and 3b, on the other
hand, present Bland-Altman plots for the two evaluation
settings: for the HR-peak based setting we obtain Pearson
r = 0.9877 and for the IBI-based setting – r = 0.9813.

4.2. Computational Efficiency Evaluation

Compared to the popular SSR techniques, the HEAL-T
pipeline is less computationally demanding. For the prelim-
inary evaluation of the computational load we use Matlab
R2015a profiler to compute the execution time by varying
the signal window size. The times reported in Figure 4 are
averages of the 20 executions per window size [20]. The
HEAL-T pipeline is compared to the LMS adaptive filtering
(the baseline) and M-FOCUSS with the learning parameters
set as λ = 0.1, γ = 10−4 and max iters = 500 [7].

For comparison we have selected the subject #10 from
the TROIKA dataset, as it represents the worst case sce-
nario (in terms of the number of calls) for the HEAL-T.
Window size is varied from 2 to 32 seconds with the 33%
overlap. From the figure 4 we can observe that the HEAL-
T execution time is 2 orders of magnitude lower that that
of M-FOCUSS, and closer to the LMS baseline [21]. Thus,
the HEAL-T approach can be considered more suitable for
real-time HR monitoring.

5. Conclusion

We have presented an HR estimation pipeline that con-
sists of fast-ICA, moving average filter, RLS, BHW and
a spectral peak tracking process. In comparison to current
systems, the HEAL-T pipeline is robust enough to accurately
estimate HR in presence of high amount of motion artifacts.
The approach is evaluated on the TROIKA dataset both in
terms of the accuracy of HR estimation (averaging and IBI)
and the computational efficiency. We have demonstrated
that the proposed method outperforms the state of the art
techniques on both criteria.
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71–80, 2013.

[7] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse
solutions to linear inverse problems with multiple measurement vec-
tors,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp.
2477–2488, 2005.

2016 24th European Signal Processing Conference (EUSIPCO)

1441



Windows Index [W]
0 50 100 150

H
e
a
rt

 R
a
te

 [
B

P
M

]

70

80

90

100

110

120

130

140

150

160
Sub #9 train-set

HEAL-T
Ground-truth
smooth HEAL-T

(a)

Windows Index [W]
20 40 60 80 100 120

H
e
a
r
t
 
R

a
t
e
 
[
B

P
M

]

100

110

120

130

140

Sub #7 test-set

Ground-truth

HEAL-T

smooth HEAL-T

(b)

Figure 2: HR estimation results for subjects #9 from the training set (2a) and #7 from the test set (2b), averaged for each
8 s window in trial.

(a) (b)
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