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Abstract—Mobile Cloud Computing refers to offloading com-
putationally intensive algorithms from a mobile device to a cloud
in order to save resources (time and energy) in the mobile device.
But when the connection to the cloud is non-existent or limited, as
in battle-space scenarios, exploiting neighbouring devices could
be an alternative. In this paper we have developed a framework
to offload computationally intensive algorithms to neighbours in
order to minimise the algorithm completion time. We propose
resource allocation algorithms to maximize the performance of
these systems in real-time computer vision applications (drop less
targets). Results show significant performance improvement at
the cost of using some extra energy resource. Finally we define
a new performance metric which also incorporates the energy
consumed and is used to compare the offloading algorithms.

Index Terms—Offloading, Mobile Cloud Computing, Energy

I. INTRODUCTION

Off-the-shelf smartphones are becoming ubiquitous and
powerful, making them an interesting prospect to form a smart
networked camera. However, they are not powerful enough
for many applications, especially if the results are required
in real-time. We have previously considered their pros and
cons for distributed person re-identification [1]. If smartphones
are deployed to carry out computationally intensive computer
vision tasks, such as person tracking and re-identification
between multiple cameras, they may not always be able to
process everything within a user specified time. As such we
can define performance of a system as the ratio of number of
jobs processed to the number of jobs available.

Conventionally, computationally intensive algorithms have
been offloaded to the “cloud” and it has been shown in some
cases to save time and energy [2] [3]. In this paper however,
we present a novel framework to offload these tasks to neigh-
bouring mobile nodes which can significantly increase the
performance without substantially depleting battery resource
compared to the non-offloading case. We also present a single
metric called Efficiency Score (ES) which also incorporates
the energy consumption along with the performance.

A. Computing platform types

If there is no network connectivity, the only option is to do
on-board processing. However, if there is some connectivity,
we have the option to offload. We use the term “onloader”
for the system which the “offloader” offloads its workload to.
Some on-board processing can reduce the amount of data to
be communicated while freeing up the onloader’s resources.
For example, a background subtraction algorithm can limit the
sensor from sending images with little or no activity. This
saves communication cost for the sensor and the onloader
has fewer jobs to perform. However, when the algorithms are
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Fig. 1. Pedestrian identification scenario: device X inundated with targets
while device Y is idle (left), shows computational load on X and Y. T1–T4
indicates arrival of targets (right).

fairly complex, the cloud is the preferred option. High round-
trip latency can be compensated by its shorter runtime owing
to high performance computing resources in the cloud. More
details on mobile cloud offloading can be found in [4].

Neighbouring nodes are important alternative to the cloud
for two reasons, the first reason is communicating with neigh-
bours can help in the co-ordination and control of the node
network. Neighbours can provide a cue of an incoming target,
or give complementary and valuable information about the
targets. More details about co-ordination and control can be
found in [5]. The second reason is that when the cloud is
unavailable, they can help in sharing the computational load.
For example, in an underground transportation network, battle-
space scenario, or a search and rescue mission after natural
disaster, the internet may be unreachable. Even if there is a
connection, the Network Bandwidth (BW) may be too low
or intermittent. Neighbouring devices lack the computational
power and energy of the cloud but may be readily available
with high BW connections. However, we need to consider their
available energy resources before offloading a job as when
in the field, charging may not be readily available. In this
paper, we discuss its feasibility in terms of time and energy.
Magurawalage et al. have considered offloading to intermediate
cloud like entity called cloudlets [6] but to the best of our
knowledge, battery powered neighbours have not been used
by anyone as an offloading candidate.

B. Problem formulation

Let us assume there are two similar smartphones (X and
Y) deployed in the field to identify people arriving in their
Field Of View (FOV). Each can only process N targets at a
time. When there are P > N potential targets to process, as
shown in the Fig. 1 where N = 3, X has no other option than
to offload or drop some of the targets. If the cloud is available
and the bandwidth is sufficiently high, the cloud can be the
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onloader. Then, X can offload (P−N ) targets to the cloud and
as Kumar et. al explains, it can save time and energy [2]. If
the cloud is not available, conventional system would simply
drop the targets. However, device Y has no target in its FOV
at this moment. We show that neighbour devices like Y can
be good alternative and may be used for offloading.

We now describe the simulator we developed to study
smartphones with cellular and Wi-Fi communication capabili-
ties. Then in section III, we describe how we use the simulator
for a person re-identification system. Then we describe exper-
iments in section IV and show results. Finally in section V,
we present conclusions to the paper.

II. MODELLING NETWORK OF SMART CAMERAS

The simulator allows us to use a simplified model of the
algorithm flow for the target platform and update components
easily as required. Wu et al. used queuing model theory to
simulate workload on distributed nodes [3]. However, their
assumption that when there is no workload the nodes do
not consume any energy is not valid in real life. The major
elements of our simulator relate to the algorithmic tasks, the
sensor architecture, communication links and the targets. We
go through each one in detail below.

A. Algorithmic tasks

The simulator’s model for the algorithmic task is charac-
terised by its number of Operations (OP), input and output
data size. For example, a person detection algorithm takes an
image of size M × N as the input, requires approximately
C OP per image and outputs the number of persons in the
image. Assuming one OP per clock cycle, we can estimate the
execution time on the device using the clock frequency.

Texec ∝
C

Clock Frequency
(1)

We are aware that in different processors some OP take
more than one cycle and multiple OP can be possible in one
cycle, however this approximation (Eqn. (1)) gives an estimate
of time required without detailed execution information. If
desired, algorithms could be executed on the Device Under
Test (DUT) to measure the execution time more precisely.

The number of OP required for an algorithm can change.
For instance, in the Mixture of Gradients (MOG) algorithm for
background subtraction, it depends on how quickly a matching
Gaussian distribution is detected for the particular pixel [7]. To
make calculations easier for the simulation, we take the worst
case scenario where the matching Gaussian is not found.

B. Component Based Sensors

In order to realistically emulate its behaviour, a sensor is
divided into its components such as the Central Processing
Unit (CPU) and cellular radio. We do not consider the energy
consumption by the display as it can be turned off by the
application. We use the utilisation based model by Jung et al.
to calculate the energy consumption [8] and our parameters
are based on a Google Nexus I phone which was one of their
DUTs. However if desired, the simulator can be calibrated for
a different DUT in a straightforward manner.

TABLE I. CPU PARAMETERS

Frequency 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4
β

cpu
freq 201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5

βcpu
idle 35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6

1) Image Sensor: The image sensor consumes significant
energy in a mobile device when used continuously. According
to Likamwa et al., the energy consumption per frame of the
image sensor can be modelled as follows [9].

Ecamera = Pidle × (Tframe − Tactive) + Pactive × Tactive (2)

where Tactive =
Number of Pixels

Camera Clock Frequency . Based on Eqn. 2 , we can
either reduce the image resolution, thereby reducing Tactive or
reduce the acquisition rate to save the energy consumption.

2) Application Processor (AP): The CPU power is made
up of two parts, idle power and the running power, as follows:

pcpu = βcpu
freq × u+ βcpu

idle, (3)

where u is the utilisation and βcpu
freq and βcpu

idle are the CPU
parameters listed in Table I. We calculate the utilisation as
the ratio of the CPU time used vs the time available per
frame. However, the CPU is also used by the Operating System
(OS) and other running applications. Dargie used normal and
exponential distributions to simulate workload in [10]. We
also used a random variable (r) sampled from a Gaussian
distribution to simulate these other activities. By adjusting the
mean of r we can a simulate busy sensor and idle sensor. The
total utilisation is calculated as shown below.

u =

∑N
i=1 Texeci

TFrame
+ r (4)

where N is the number of algorithms to be processed,
Texeci is the execution time for ith algorithm (see Table II for
execution times for all algorithms) and TFrame =

1
FPS is the time

available for each frame. In the situation where Texeci > TFrame
which is very likely in the case of algorithms for person re-
identification; we only run the CPU to 100% load and run the
remainder of the algorithm in the next frame and so on.

3) Cellular (3G): Cellular radio is modelled as a three
state system: IDLE, Forward Access Channel (FACH) and
Dedicated Channel (DCH). The IDLE mode is the non com-
municating mode and has the lowest power consumption. In
this mode, the User Equipment (UE) is turned on but has not
established Radio Resource Control (RRC) connection with
the Radio Network Controller (RNC). In DCH state the UE
has a dedicated transport channel for data transmission in
both directions, but this is 50 to 100% more expensive than
FACH, where FACH is the intermediate state with reduced
power consumption and low data rate. There is no dedicated
channel allocated in this mode and it can only transmit user
data through shared low speed channel that is typically less
than 15kbps [11]. As we can see from Eqn. (5), power is only
dependent on state but not on utilisation. Fig. 2 shows the
state diagram with the inactivity timers which along with data
buffer size controls the state promotions and demotions.

p3g =


βIDLE if RRC state is IDLE
βFACH if RRC state is FACH
βDCH if RRC state is DCH

(5)

where RRC is the current state of UE and βIDLE, βFACH and
βDCH are based on [8].
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Fig. 2. Cellular radio states, α1 and α2 are inactivity timers whereas δ1 and
δ2 are delay to get to DCH
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Fig. 3. Person Re-identification work-flow.

4) Wi-Fi: The Wi-Fi model calculates the time and energy
of the Wi-Fi component in the connected mode. There are two
modes depending upon the packet rate.

pwifi =

{
βLT × p+ βLT base if p ≤ Threshold
βHT × p+ βHT base if p > Threshold

(6)

where p is the packet rate, βLT, βHT, βLT base and βHT base are
the parameters of the DUT based on [8]. If the number of
packets per second exceeds the threshold of 20 then Wi-Fi is
in the high power state, else in the low power state. Unlike the
cellular system, the power consumption is directly proportional
to the data rate. Although Wi-Fi consumes energy in scanning
mode, we ignore it as we assume a connection between the
sensors as the basis of this research.

III. SYSTEM DESIGN

In this section, we show how offloading may be used to
increase the performance of a system. We consider a pedestrian
re-identification system outlined in Fig. 3. It starts with image
acquisition from the image sensor. A background subtraction
and a person detection algorithm is applied on the image
to detect the number of people in the view. When there a
pedestrian is detected, we apply a person re-identification
algorithm to each detection such as [12]. Our goal is to identify
as many detections as possible.

A. Application Partitioning

The algorithmic complexity of the person re-identification
algorithm outweighs that of other algorithms in the chain (see
Table II). So, the overall complexity of the system can be
estimated as O(N) where N is the number of people detected.
To be realistic, we limit the number of people in an image
(800× 600) in the simulator to be fewer than 10.

B. Energy Saving Methods

We replicate following energy saving techniques to make
the simulation realistic as much as possible.

1) Dynamic Frame per Second: We can save energy by
decreasing the number of FPS of the system (see Eqn. (4)).
However, very low FPS may mean some of the detections may
be missed. We implemented an algorithm to vary the FPS of
each individual sensor between 1 and 16 in the following way.

FPS (new) =
{

FPS (old) × 2 if t < τ

FPS (old) ÷ 2 if t > τ
(7)

where t is the time between target activities and τ is 5 seconds.

TABLE II. EXECUTION TIMES FOR CPU RUNNING @ 998.4 MHZ

Algorithm Execution Time
Background Subtraction 0.1
Person Detector 0.2
Person Re-identification 5.1
Total Time 5.3

2) Dynamic Voltage and Frequency Scaling (DVFS): A
simple algorithm controls the clock frequency of the sensor.
When the CPU utilisation is below 0.4, the clock frequency
is lowered according to Table I and it is scaled to maximum
frequency as soon as the utilisation is above 0.9.

C. Offloading

We classify only the re-identification algorithm as offload-
able as for others, the communication costs and the time delay
outweighs the benefits of offloading. Offloading an algorithm
entails sending input data, waiting for the onloader to execute,
and receiving output data. Before transmitting however, the
data has to be formatted in packets and some overhead will be
added to the processor. These operations can be a few hundred
per packet which needs to be added to the CPU workload.

1) Time Cost: The communication times are proportional
to the data size to be communicated and inversely proportional
to the network BW. We assumed the BW to be static. Waiting
times can be estimated using Eqn. (1) for the onloader’s clock
frequency. But, it does not take into account the CPU load.
If our onloader’s AP is already busy, our estimation can be
very far from reality. So we re-write the time calculation using
onloader’s average CPU utilisation.

Twait =
Texec

1− E[u]
(8)

where E[u] is the average of u from Eqn. (4). The total time
cost which is also known as makespan, is shown below [13].

Ttotal = Tpacket + Tsend + Twait + Treceive (9)

where Tpacket is the time to format the data in a packet.

2) Energy Cost: There are two energy costs involved. The
first is for the offloader (Eoff) and includes data packeting and
the radio communication cost.

Eoff = (Tsend + Treceive)× Pradio + Pcpu × Tpacket (10)

where radio ∈ {3G,WiFi}. Second is for the onloader which
includes radio cost, execution cost and the packeting costs. So
far, in literature, cost for the onloader is ignored as energy is
not of major concern for the cloud. But while offloading to
the neighbours, we need to consider it.

Eon = (Treceive+Tsend)×Pradio+Pcpu×(Texecute+Tpacket) (11)

D. Multi-Objective Optimisation

The time and energy costs from Eqn. (9, 10 and 11) can be
inferred as variables of a multi-objective optimisation problem.

Cost = wtime × Ttotal + woff × Eoff + won × Eon (12)

where wtime, woff and won are the weights for each objective.
The cost function involves adding time and energy variables
(i.e. different units), which requires careful selection of the
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Fig. 4. Multi-Objective optimisation problem reduced to two objectives.

weights. We avoid this situation by limiting one of the objec-
tives to a threshold (ε) and optimising rest of the objectives
[14]. Regarding the real-time nature of our problem, we limit
the time and optimise the energy variables. We set ε = 25
seconds and leave out the nodes that do not satisfy this
constraint (denoted by the light dots in Fig. 4). It is still a
multi-objective problem but only with two variables of the
same unit (Joules). We now study three methods to optimize
offloading performance.

1) Minimize Energy Cost (MEC): In this method, we
choose the node that satisfies the time constraint described
above and incurs the minimum offloader and the onloader
energy cost. The solution is pareto-optimal and denoted by
nodes on the line in Fig. 4 [14].

CostMEC = woff × Eoff + won × Eon (13)

2) Minimize Battery Impact (MBI): In a battery-powered
device, using the least energy cost per job alone may not in-
crease device lifetime. For example, say an algorithm requires
10 and 8 Joules on devices X and Y respectively. But X and
Y have 500 and 50 Joules left in their battery respectively.
Considering energy cost alone, Y is the best choice but when
we consider the amount of energy left in the device clearly X
is a better choice. We re-write Eqn. (13) as follows.

CostMBI = woff ×
Eoff

Erem. off
+ won ×

Eon

Erem. on
(14)

where Erem. off and Erem. on are the energy left in the offloader
and the onloader nodes.

3) Offload Only if Busy (OOB): The previous methods try
to find the global solution, but offloading has overhead costs.
So, this method tries to offload only if on-board processing is
estimated to be infeasible. To do so, we add all the operations
in the execution queue and use Eqn. (1) to estimate the
minimum remaining processing time. If this time is greater
than the threshold (ε), offload the algorithm minimising the
time and energy objectives defined in Eqn. (12).

IV. SIMULATION AND RESULTS

We simulated a number of sensors connected to each other
by Wi-Fi and to the server (when available) by cellular link.
For simplicity, we assume that resource information about all
the nodes (remaining energy, current CPU load etc.) is avail-
able and all the sensors have same computational capability but
the server is 10 times more powerful. Also there is no energy
limitation for the cloud so the weight won for the cloud is set
to zero. Wi-Fi is set to 10 Mbps (high BW) whereas cellular
is slower and set to 1 Mbps. At the start of the simulation,

Fig. 5. Snapshot of simulation showing targets as dots and sensors. (Green
FOV signifies target in FOV whereas red means no target in FOV).

TABLE III. SIMULATION RESULTS (AVERAGED OVER 100 RUNS)

Algo-
rithm

Targets
Detected

Targets
Offloaded

Targets
Dropped

SI Energy Used
(Joules)

ES
(per 100J)

Cloud not available
NO 13.29 0 2.91 10.38 499.61 2.08

MEC 13.28 5.19 0.61 12.67 546.05 2.32
MBI 13.29 12.5 4.42 8.87 572.31 1.55
OOB 13.28 5.18 0.24 13.04 546.88 2.38

Cloud available
NO 13.28 0 2.90 10.38 506.31 2.05

MEC 13.25 13.13 0.001 13.25 651.28 2.03
MBI 13.25 13.23 0.002 13.25 652.23 2.03
OOB 13.26 4.95 0.18 13.08 601.58 2.17

the battery level is uniformly distributed between 0−10 Watt-
hour. The mean of r in Eqn. (3) is uniformly distributed from
0 − 1 (full load) and the standard deviation is fixed to 0.1.
These parameters do not change during the simulation. Full
simulation data and parameters are available here 1. Fig. 5
shows a snapshot of the simulation, where the blue squares
and red dots represent the sensors and targets respectively . The
targets are generated using a Poisson distribution and follow
the random waypoint model [15]. In this model,targets move
from one point to another with random speed and can also
pause for random amount of time. When they enter into the
FOV of the sensors (shown as green areas in Fig. 5), they
are tagged as detected targets. The detected targets are then
identified. Once the target has been detected and identified, it
does not have to be re-identified again in the same camera.
This is done to simulate tracking the target in each camera
and using the best representation for identification purposes.

We tested the algorithms with various parameters using 100
Monte-Carlo runs each representing a 10 minute period. The
results are listed in Table III. When the cloud is not available,
Successful Identifications (SI) (which is targets detected minus
targets dropped) improved from 10.4 in the Non Offloading
(NO) case to 12.7 for the MEC case and 13 for OOB case
but degraded to 8.87 for MBI. MEC and OOB boosted the
performance by more than 20% while only incurring around
extra 10% energy consumption. MBI did not perform well
because of the communication overhead. However, if the runs
were longer, may be we would see some improvement in the
device lifetime. All the algorithms did better than the NO case
when the cloud was available, dropping almost no targets but
the energy consumption was significantly higher. This shows
that offloading to cloud blindly may increase the performance
short term but may shorten device lifetime.

1http://sauravsthapit.com.np/EUSIPCO2016/
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A. Metrics

In order to access the performance of the offloading deci-
sion algorithms, we used two approaches. First we compared
the algorithm’s performance to the NO case. We calculate the
performance of proposed algorithms in terms of performance
improvement and energy savings. Fig.6 shows that both MEC
algorithm and OOB algorithm has superior performance in all
the scenarios. The MBI algorithm however did not fare very
well when cloud was not available. Second, we define and
calculate Efficiency Score (ES) of the algorithms as follows:

ES =
Nodes∑
i=1

SIi
Energy Usedi

(15)

This can be interpreted as SI per Joule and means how
productively the energy resources have been used. However,
this should not be confused with the accuracy and energy
consumption of the person re-identification algorithm. Table
III shows OOB has the best ES score with 2.38 and MBI has
the worst with 1.55. This is consistent with our intuition that
the algorithm performing the best and with relatively lower
energy consumption is better. In the cloud available case, ES
score for NO is greater than for MEC and MBI which suggests
that even though performance has improved, the energy is not
used efficiently. The metric can be visualised in Fig. 7. It is
desired to develop an algorithm with ES at the top left corner
of the graph, which indicates low energy usage and high SI,
whereas being in bottom right corner indicates high energy
usage without fruitful performance.

V. CONCLUSION

This paper presented a simulation model for offloading
computationally intensive algorithms to neighbouring devices
when the cloud is not available. The results show that among
the three, OOB consistently achieved the best trade-off be-
tween power and performance. It improved the performance
by approx. 25% while costing about 10 − 20% more energy.
The ES metrics suggests that energy is used more productively.
Contrary to the general belief, the results show that given the
constraints in bandwidth offloading to the cloud may not be

the best option in terms of performance and energy cost. In
future work, we plan to evaluate more dynamic scenarios.
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