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Abstract—In this paper, we present a new detector for cogni-
tive radio system based on the Canonical Correlation Significance
Test (CCST). Unlike existing CCST approaches, which can only
be applied on Multi-Antenna System (MAS), our algorithm can
be extended for both Single Antenna System (SAS) and MAS.
For SAS, the proposed algorithm exploits the time diversity
of cyclostationary signals in order to detect the Primary User
(PU) signal. Our simulation results shows that our algorithm
outperforms well-known cyclostationary algorithm [9]. For MAS,
our algorithm uses both spatial and time diversities to apply the
CCST. Numerical results are given to illustrate the performance
of our algorithm and verify its efficiency for special noise cases
(spatially correlated and spatially colored). The simulation results
show the superiority of the performance of the proposed detector
compared to the recently CCST proposed algorithm [1].

Keywords—Canonical Correlation Significance Test, Single An-
tenna System, Multi-Antenna System, Spatial and Time diversities,
Spectrum Sensing, Cognitive Radio.

I. INTRODUCTION

The Cognitive Radio (CR) has been recently proposed
in order to solve the scarcity in frequency bandwidths
[2]. CR uses spectrum sensing in order to share spectrum
between two classes of users, Primary User (PU) and
Secondary User (PU). PU has the spectrum license. When
PU is idle, a SU can access the channel. When the PU
becomes again active, SU should immediately vacate the
channel, to avoid any interference. The monitoring of the
PU activities is allocated to the spectrum sensing part of a CR.

In the literature, many Spectrum Sensing techniques can
be identified [3], [4], [5]. The widely used Energy Detection
(ED) method consists in comparing the energy of the received
signal to a predefined threshold that is suffering from the
noise uncertainty. This uncertainty leads to the SNR wall
phenomenon [6], which prevents the ED to make an accurate
decision on the channel even with infinite time observation.

Other methods are well known in this context such as
Waveform Detection (WFD) that requires a perfect knowledge
about the PU signal, which makes WFD not applicable in
CR which should deal with a great variety of signals [3], [5].
The Autocorrelation Detection (ACD) exploits the correlation

of the PU signal samples in order to detect it, assuming that
the noise samples are white [7]. Eigenvalues based detection
(EBD) is based on testing the greatest eigenvalue of the
correlation matrix of the signals received on several antennas.
EBD can also be applied for a system of one antenna when
the PU signal is oversampled [8].

The cyclostationary detector (CSD) shows its robustness
against the noise uncertainty and the low SNR [1], [9],
[11]. Thanks to the fact that most communication signals
are cyclostationary due to the modulation process, the
carrier frequency, the pilot signal, etc., CSD becomes a
good candidate to detect the PU in CR, and therefore, to
differentiate between signals and noise since the noise does
not exhibit any cyclostationarity.

In order to enhance the Spectrum Sensing performance,
multi-antennas system (MAS) has been proposed and exploited
for various Spectrum Sensing strategies, such as Cooperative
Spectrum Sensing for hard and and soft combining schemes
[5], [10]. Recently, MAS has been used used to perform the
cyclostationary detection in Spectrum Sensing. MAS [12] is
used to detect multi cyclic frequencies PU’s signals. In their
approach [12], each antenna tests the cyclostationarity of the
received signal at one cyclic frequency, then the cooperative
antennas send their decisions to the Fusion Center (FC) to
make the final decision. In [1], [11], the Canonical Correlation
Significance Test (CCST) is used to examine the canonical
correlation among the observed at M antennas and the shifted
copies of these signals at a given cyclic frequency.

In this paper, we aim at extending CCST for both Single-
Antenna System (SAS) and MAS. We refer to our algorithm
for SAS by CCST-S and for that of MAS by CCST-M. Our
two algorithms exploit both time and spatial diversities. Time
diversity help us to develop CCST-S, which tests the canonical
correlation of the time shifted versions of the received signal
at a given cyclic frequency. The numerical results shows that
CCST-S outperforms the Generalized Likelihood Ratio Test
(GLRT) cyclostationary detector of [9]. Hereinafter, we extend
our algorithm to the MAS. Our algorithm is tested under
various scenarios, for spatially uncorrelated, spatially corre-
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lated and spatially colored noise. In those different scenarios,
our algorithm outperforms significantly the existing CCST
algorithm.

II. SYSTEM MODEL

The problem formulation on the presence/absence of the
PU can be presented in a classic Bayesian detection problem
as follows:

Hη : xi(n) = ηhis(n) + wi(n) (1)

Where η ∈ {0; 1}. H0 stands for the case where PU is absent,
whereas under H1 PU is transmitting. xi(n) is a 1 × N
vector representing the observation at the ith SU receiving
antenna, N stands for the total number of received samples,
s(n) is the PU signal, wi(n) is the noise at the ith SU
receiving antenna and assumed to be stationary zero mean
White Gaussian Noise (AWGN), with a variance σ2

wi
and the

channel gain, hi, between the PU base station and the ith
SU receiving antenna is assumed to be constant during the
Spectrum Sensing Process.
Let x(n) be the vector collecting the observations on M
antennas:

x(n) = [x1(n), x2(n), ... xM (n)]
T (2)

In [1], [11], CCST requires MAS in order to be applied, where
the CCST is done over x(n) and x(n − τ)ej2παn. The lag
τ is chosen offline in order to maximize

∑N
n=1 s(n)s∗(n −

τ)e−j2παn at a non-zero cyclic frequency α, where s∗(n)
stands for the conjugate of s(n). CCST determines the number
of signals having non-zero cyclic statistics at α. In this
manuscript, CCST is applied on the set of multiple shifted
versions of the received signal over SAS. When the PU
signal is absent (i.e. H0), the noise does not exhibit any
cyclic statistics; Whereas under H1, CCST should confirm
the presence of PU thanks to the cyclic statistics of the PU
signal. Hereinafter, this system is extended for MAS, where
both spatial and time diversities are exploited, unlike [1], [11],
where only the spatial diversity was exploited.

III. SPECTRUM SENSING DETECTOR BASED ON CCST

CCST is based on the canonical correlation theory (CCT),
which aims at finding common factors between two sets of
data, y(n) and z(n). The number of common factors between
y(n) and z(n) is equal to the rank of the following matrix
[11], [13], [14].

R = R−1yy RyzR
−1
zz Rzy : (3)

Where Ryz = Cov[y(n), z(n)] and can be estimated by R̂yz

R̂yz =
1

N
y(n)zH(n) (4)

Where zH(n) is the Transpose Conjugate of z(n).
CCST uses similar techniques to identify the common factors
between x(n) and x(n) exp (−j2παn), where α is a known
cyclic frequency. The number of common factors is the number
of signals having a cyclic frequency α [1], [11]. In our context,
under H0 there is no signal having a cyclic frequency α;
whereas under H1, we should have only one signal, which
is the PU signal. According to this discussion, the application

of the CCST is depending on the presence of a multi-antenna
system to ensure the vector x(n).

IV. PROPOSED CCST ALGORITHM FOR A SINGLE
ANTENNA SYSTEM

The received signal in SAS under H0 and H1 is presented
as follows: {

H0 : x1(n) = w1(n)

H1 : x1(n) = h1s(n) + w1(n)
(5)

Let us define the vector, Γ, containing the lag values:

Γ = [τ1, τ2, ..., τP ] (6)

Where P stands for the length of Γ, which is chosen offline
in such a way

∑N
n=1 s(n − τm)s∗(n − τk)e−j2παn 6= 0,

∀ τm, τk ∈ Γ.
A vector of shifted signals, r1(n,m), is defined as follows:

r1(n,m) = [x1(n− τ1), x1(n− τ2), ... x1(n− τm)]
T (7)

Where m ≤ P . The CCST will be estimated on r1(n, p1) and
q1(n, p2, α) = r1(n, p2)ej2παn, ∀ p1, p2 ∈ [1;P ], to obtain
the matrix R̂SAS :

R̂SAS = R̂−1rr R̂rqR̂
−1
qq R̂qr (8)

where R̂rq is estimated as presented in (4).

Under H0, the cyclic autocorrelation matrix, R̂0
rq, of the

shifted versions of the noise is obtained as follows:

R̂0
rq(α) =


R̂w11 (α) R̂w12 (α) . . . R̂w1p2

(α)

R̂w21 (α) R̂w22 (α) . . . R̂w2p2
(α)

...
... . . .

...
R̂wp11 (α) . . . R̂wp12 (α) . . . R̂wp1p2

(α)

 (9)

Where R̂wij
(α) is defined by:

R̂wij
(α) =

1

N

N∑
n=1

w1(n− τi)w∗1(n− τj)e−j2παn (10)

Since w1(n) is purely stationary and does not exhibit any
cyclic correlation for all α 6= 0, then R̂0

rq ' 0.
Under H1, the cyclic autocorrelation matrix, R̂1

rq, is presented
as follows:

R̂1
rq(α) = R̂ss(α) + R̂sw(α) + R̂ws(α) + R̂0

rq(α) (11)

Where R̂ws(α) and R̂sw(α) are the cyclic autocorrelation
matrices between the noise and the PU signal, and they should
be equal to zero, and R̂ss(α) is defined as follows:

R̂ss(α) = |h|2


R̂s11(α) R̂s12(α) . . . R̂s1p2 (α)

R̂s21(α) R̂s22(α) . . . R̂s2p2 (α)
...

... . . .
...

R̂sp11
(α) R̂sp12

(α) . . . R̂sp1p2
(α)


(12)

2016 24th European Signal Processing Conference (EUSIPCO)

1233



Where R̂sij (α) is the estimated cyclic autocorrelation of
s(n) at two lags τi and τj and it can be found similarly
to (10). Rss(α) is a non-zero matrix thanks to the cyclic
autocorrelation of s(n) at the cyclic frequency α.
In order to diagnose the channel status, we can examine the
existence of cyclostationary signal (PU signal) or not (only
noise). The CCST can help us to estimate the number of the
signals having a cyclic frequency α using (8). Since one PU
signal can be existing in the channel, the challenge becomes
to differentiate between two cases: noise-only or signal plus
noise.
The test statistic, TSAS , that leads to determine the vacancy
of the channel is defined as follows [13]:

TSAS = −N log
l∏
i=1

(1− λi) (13)

Where {λi}, i = 1, 2, ..., l are the greatest l eigenvalues of
R̂SAS , and 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λl. l ≤ M is the number of
signals to be detected. According to our hypothesis, one PU
signal can exist, therefore l = 1 in our application. TSAS will
be compared to a certain threshold, ξ, in order to examine an
existing vacancy of the bandwidth.

TSAS
H1

R
H0

ξ (14)

The following algorithm summarizes the steps followed to
calculate TSAS and to make a decision on the channel status.

Algorithm 1 Spectrum Sensing using CCST
1. Estimate the covariance matrix RSAS using (8)
2. Calculate the eigenvalues of R̂SAS
3. Evaluate the test statistic according to (13).
4. Compare the test statistic to a threshold to make a decision
on the channel opportunity

V. SPECTRUM SENSING USING CCST UNDER
MULTI-ANTENNA SYSTEM

In this section, we develop the detector CCST-S in order
to be applied in the Multi-Antenna System (MAS). Let us
denote by X(n,m) and Y(n, p, α) the two following vectors
respectively:

X(n,m) = [r1(n,m), r2(n,m), ..., rM (n,m)]T (15)
Y(n, p, α) = [q1(n, p, α),q2(n, p, α), ...,qM (n, p, α)]T (16)

Where ri(n,m), 1 ≤ i ≤ M , is the vector containing the
shifted versions of the signal received at the ith antenna, and
is defined according to (7), and qi(n, p, α), 1 ≤ i ≤ M , is
equal to ri(n, p)ej2παn.
In order to find the number of cyclostationary signals that
have a cyclic frequency α in the two data sets X(n,m) and
Y(n, p, α), the CCST is applied:

R̂MAS = R̂−1XXR̂XY R̂
−1
Y Y R̂Y X (17)

The test statistic evaluated to examine the channel is presented
as follows:

TMAS = −N log(1− ρ1) (18)
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Fig. 1. ROC curves of GLRT and CCST-S for various values of the length
of the lag vector

Where ρ1 is the greatest eigenvalue of R̂MAS .
The advantage of this proposed detector with respect to that
of [1] is that our algorithm exploits both spatial and temporal
diversities, while the detector of [1] is only based on the spatial
diversity as the CCST is done over X(n, 0) and Y(n, τ1, α).

VI. NUMERICAL RESULTS

In this section, we examine the performance of our
proposed detectors. The performance of CCST-S is compared
to the GLRT cyclostationary detector of [9], and the
performance of CCST-M is compared with the CCST detector
of [1] that we refer to it by CCST-D. Throughout the
simulations, the PU signal is assumed to be down-converted
16-QAM modulated signal. The symbol duration is 1µs
and the sampling frequency, Fs, is 8 MHz. A square-root
raised cosine shape is used with a roll-off factor of 0.5.
the channel between the PU base station and the ith SU
receiver is modeled as flat-fading Rayleigh. The lag vector
used in this simulation is Γu = [τ1, τ2, τ3, τ4, τ5, τ6, τ7] =
[0, Ts, 2Ts, 3Ts, 4Ts, 5Ts, 6Ts, 7Ts] is assigned, where
Ts = 1

Fs
.

A. CCST over SAS

In figure (1), the number of samples is 2000 and the lag
vector length of r1(n, p1) is to fixed to p1 = 8, whereas
various values are assigned for the lag vector length, p2, of
q1(n, p2, α). This figure shows the ROC curve which is the
variation of the probability of detection (pd) with respect to
the probability of false alarm (pfa). Our proposed algorithm
outperforms the GLRT algorithm of [9] for various values
of the q1(n) lag vector length, p2, and a fixed p1 = 8.
Furthermore, the performance of our algorithm is enhanced
by increasing the number of lags p2.

To show the time diversity effect on the performance of
CCST-S, we examine this algorithm performance for vari-
ous values of Γ’s length of the two vectors r1(n, p1) and
q1(n, p2, α) which are assumed to have the same length
(i.e. p1 = p2 = p). Our simulations are done under various
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Fig. 3. The probability of missed detection, pmd = 1 − pd, for various
number of receiving antennas (M) under pfa = 0.1

SNR and a constant pfa = 0.1. Figure (2) shows the inter-
dependence between CCST-S and the time diversity, where
pd increases progressively when the length of the lag vector
increases.

B. CCST over MAS

In this section we evaluate CCST-M for different types of
noise: the spatially uncorrelated noise, the spatially correlated
noise and the spatially colored but uncorrelated noise. Through
the following simulations, X(n, p) and Y(n, p, α) are assumed
to have the same lag vector which is the same as Γu.

a) Spatially Uncorrelated Noise: Figure (3) shows the
probability of missed detection (pmd) for different number of
receiving antennas, M . The number of received samples at
each antenna is considered as N = 1000 samples, the SNR
is fixed to −10 dB and (pfa = 0.1). For different M , our
algorithm achieves a lower pmd than the one of CCST-D. When
M increases the gap between CCST-M and CCST-D becomes
larger. For M=5 antennas, pmd ' 0.2 for CCST-D and pmd '
0.06 for CCST-M. When M=7, pmd becomes 0.1 approximatly
for CCST-D while CCST-M reaches pmd = 0.004.
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Fig. 4. The probability of missed detection, pmd = 1−pd, for various SNR
under pfa = 0.05

b) Spatially correlated Noise: Figure (4) shows the
simulation results of CCST-M under spatially correlated noise.
The correlation among the noise components at the SU receiv-
ing antennas is defined as follows:

E[wi(n)w∗j (n)] =

{
σ2
w i = j

σ2
wγ
|i−j| i 6= j

; 1 ≤ i, j ≤M ;

(19)
Where γ is the correlation factor and 0 ≤ γ ≤ 1.

In this simulation the number of SU receiving antennas
is M = 5, the number of received samples at each antenna is
1000. Figure (4) shows that our algorithm slightly outperforms
CCST-D by more than 2 dB. For example, our algorithm
reaches pmd = 0.5 at SNR = −14dB, whereas CCST-D
reaches this probability at SNR = −12dB.

c) Spatially Uncorrelated but colored Noise: In this
simulation, we assume that the noise components on the
M receiving antennas are spatially uncorrelated but colored.
The average SNR is fixed to −12 dB, M=6 antennas and
N = 2000 samples. As shown in figure (5), CCST-M has
a lower Complementary ROC curve than CCST-D. CCST-M
achieve pmd = 0.1 for a pfa = 0.03, whereas CCST-D achieve
the same pmd for pfa = 0.5.

VII. CONCLUSION

In this paper, we presented a new algorithm based on the
Canonical Correlation Significance Test (CCST). The main
objective of this work was to apply CCST for Single-Antenna
System. For that, the time diversity is manipulated. For Multi-
Antenna System, both spatial and time diversities are exploited
to detect the PU signal. A performance analysis was carried
out by simulation to show the effectiveness of our proposed
algorithms which outperform other existing ones for various
noise models.
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